Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vessels batch operations

In principle, at least, any mixer may be coupled with any settler to provide the complete stage. There are several combinations which are especially popufar. Continuously operated devices usually, but not always, place the mixing and settling functions in separate vessels. Batch-operated devices may use the same vessel alternately for the separate functions. [Pg.1466]

Although most appHcations of fixed bed have multiple adsorber beds to treat continuous streams, batch operation using a single adsorber bed is an alternative. For purification appHcations, where one vessel can contain enough adsorbent to provide treatment for days, weeks, or even months, the cost savings and simplicity often justify the inconvenience of stopping adsorption treatment periodically for a short regeneration. [Pg.280]

Creep of Thick-walled Cylinders. The design of relatively thick-walled pressure vessels for operation at elevated temperatures where creep caimot be ignored is of interest to the oil, chemical, and power industries. In steam power plants, pressures of 35 MPa (5000 psi) and 650°C are used. Quart2 crystals are grown hydrothermaHy, using a batch process, in vessels operating at a temperature of 340—400°C and a pressure of 170 MPa (25,000 psi). In general, in the chemical industry creep is not a problem provided the wall temperature of vessels made of Ni—Cr—Mo steel is below 350°C. [Pg.86]

Distillation. This is the point at which refining begins and was the first method by which petroleum was refined. Originally, distillation (qv) involved a batch operation in which the stiU was a cast-iron vessel mounted on brickwork over a fire and the volatile materials were passed through a pipe or gooseneck which led from the top of the stiU to a condenser. The latter was a coil of pipe, or a "worm" (hence the expression worm end products), immersed in a tank of miming water. [Pg.202]

In a typical batch operation, carbon disulfide is added to four molar equivalents of 25—30 wt % aqueous ammonia in a stirred vessel, which is kept closed for the first one to two hours. The reaction is moderately exothermic and requires cooling. After two to three hours, when substantially all of the disulfide has reacted, the reaction mixture is heated to decompose dithiocarbamate and trithiocarbonate and vented to an absorption system to collect ammonia, hydrogen sulfide, and any unreacted carbon disulfide. [Pg.152]

The batch-operating units consist of only one jacketed, cyhndiical vessel with the necessary nozzles and ports for product inlet and out-... [Pg.1219]

Due to the nature of batch operations, transferring and charging of process materials is a common activity. This can entail gas, liquids, and/or solids handling via open equipment. This may include pumping of liquids from drums or dumping of solids from other containers into an open vessel, shoveling material into a dryer, or making temporary connections such as at hose stations. [Pg.41]

Heating or cooling of process fluids in a batch-operated vessel is common in the chemical process industries. The process is unsteady state in nature because the heat flow and/or the temperature vary with time at a fixed point. The time required for the heat transfer can be modified, by increasing the agitation of the batch fluid, the rate of circulation of the heat transfer medium in a jacket and/or coil, or the heat transfer area. Bondy and Lippa [45] and Dream [46] have compiled a collection of correlations of heat transfer coefficients in agitated vessels. Batch processes are sometimes disadvantageous because ... [Pg.636]

Consider a thin layer solid bowl centrifuge as shown in Figure 4.20. In this device, particles are flung to the wall of the vessel by centrifugal force while liquor either remains stationary in batch operation or overflows a weir in continuous operation. Separation of solid from liquid will be a function of several quantities including particle and fluid densities, particle size, flowrate of slurry, and machine size and design (speed, diameter, separation distance, etc.). A relationship between them can be derived using the transport equations that were derived in Chapter 3, as follows. [Pg.109]

Let us examine some batch results. In trials in which 5 mL of a dye solution was added by pipet (with pressure) to 10 mL of water in a 25-mL flask, which was shaken to mix (as determined visually), and the mixed solution was delivered into a 3-mL rectangular cuvette, it was found that = 3-5 s, 2-4 s, and /obs 3-5 s. This is characteristic of conventional batch operation. Simple modifications can reduce this dead time. Reaction vessels designed for photometric titrations - may be useful kinetic tools. For reactions that are followed spectrophotometrically this technique is valuable Make a flat button on the end of a 4-in. length of glass rod. Deliver 3 mL of reaction medium into the rectangular cuvette in the spectrophotometer cell compartment. Transfer 10-100 p.L of a reactant stock solution to the button on the rod. Lower this into the cuvette, mix the solution with a few rapid vertical movements of the rod, and begin recording the dead time will be 3-8 s. A commercial version of the stirrer is available. [Pg.177]

All of the above processes are operated as batch fermentations, in which a volume of sterile medium in a vessel is inoculated. The broth is fermented for a defined period. The tank is then emptied and the products are separated to obtain the antibiotic. The vessel is then recharged for batch operation with medium and the sequence repeated, as often as required. Continuous fermentation is not common practice in the antibiotics industry. The antibiotic concentration will rarely exceed 20gT 1 and may be as low as 0.5g-l 1. [Pg.266]

Decanters are normally designed for continuous operation, but the same design principles will apply to batch operated units. A great variety of vessel shapes is used for decanters, but for most applications a cylindrical vessel will be suitable, and will be the cheapest shape. Typical designs are shown in Figures 10.38 and 10.39. The position of the interface can be controlled, with or without the use of instruments, by use of a syphon take-off for the heavy liquid, Figure 10.38. [Pg.440]

Example 14.1 Consider again the chlorination reaction in Example 7.3. This was examined as a continuous process. Now assume it is carried out in batch or semibatch mode. The same reactor model will be used as in Example 7.3. The liquid feed of butanoic acid is 13.3 kmol. The butanoic acid and chlorine addition rates and the temperature profile need to be optimized simultaneously through the batch, and the batch time optimized. The reaction takes place isobarically at 10 bar. The upper and lower temperature bounds are 50°C and 150°C respectively. Assume the reactor vessel to be perfectly mixed and assume that the batch operation can be modeled as a series of mixed-flow reactors. The objective is to maximize the fractional yield of a-monochlorobutanoic acid with respect to butanoic acid. Specialized software is required to perform the calculations, in this case using simulated annealing3. [Pg.295]

Equations (1-1) and (1-2) are true in the general case and can be used to study several modes of reactor operation (e.g. batch, semi-batch, continuous, start-up procedures, etc.). If the assumption is made that the reactor is a vessel continuously operating full, i.e. overflow CSTR, then the right hand side (RHS) of equation (1-2) is zero and (1-1) is considerably simplified to yield ... [Pg.233]

Batch operations are usually performed in a similar vessel without liquid and gas outlet. In such a set-up (batch) the hydrogen is still fed to the tank, at a flow rate corresponding to the chemical consumption, and possibly to heat removal capability. [Pg.1539]

A batch reactor is an agitated vessel in which the reactants are precharged and which is then emptied after the reaction is completed. More frequently for exothermic reactions, only part of the reactants are charged initially, and the remaining reactants and catalysts are fed on a controlled basis this is called a semi-batch operation. For highly exothermic reactions and for two-phase (gas-liquid) reactions, loop reactors with resultant smaller volumes can be used. [Pg.108]


See other pages where Vessels batch operations is mentioned: [Pg.400]    [Pg.461]    [Pg.93]    [Pg.201]    [Pg.371]    [Pg.417]    [Pg.96]    [Pg.505]    [Pg.419]    [Pg.1032]    [Pg.1639]    [Pg.2]    [Pg.106]    [Pg.98]    [Pg.399]    [Pg.467]    [Pg.276]    [Pg.83]    [Pg.45]    [Pg.173]    [Pg.388]    [Pg.130]    [Pg.291]    [Pg.272]    [Pg.858]    [Pg.94]    [Pg.778]   
See also in sourсe #XX -- [ Pg.294 , Pg.300 , Pg.301 ]




SEARCH



Batch Operations Heating and Cooling of Vessels

Operating batch

Operational fractions of batch extractive distillation in a middle vessel column

Operator vessel

Vessels operations

© 2024 chempedia.info