Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation vapor-liquid equilibrium

Data on the gas-liquid or vapor-liquid equilibrium for the system at hand. If absorption, stripping, and distillation operations are considered equilibrium-limited processes, which is the usual approach, these data are critical for determining the maximum possible separation. In some cases, the operations are are considerea rate-based (see Sec. 13) but require knowledge of eqmlibrium at the phase interface. Other data required include physical properties such as viscosity and density and thermodynamic properties such as enthalpy. Section 2 deals with sources of such data. [Pg.1350]

Since the boiling point properties of the components in the mixture being separated are so critical to the distillation process, the vapor-liquid equilibrium (VLE) relationship is of importance. Specifically, it is the VLE data for a mixture which establishes the required height of a column for a desired degree of separation. Constant pressure VLE data is derived from boiling point diagrams, from which a VLE curve can be constructed like the one illustrated in Figure 9 for a binary mixture. The VLE plot shown expresses the bubble-point and the dew-point of a binary mixture at constant pressure. The curve is called the equilibrium line, and it describes the compositions of the liquid and vapor in equilibrium at a constant pressure condition. [Pg.172]

The design of a distillation column is based on information derived from the VLE diagram describing the mixtures to be separated. The vapor-liquid equilibrium characteristics are indicated by the characteristic shapes of the equilibrium curves. This is what determines the number of stages, and hence the number of trays needed for a separation. Although column designs are often proprietary, the classical method of McCabe-Thiele for binary columns is instructive on the principles of design. [Pg.174]

It is essential to calculate, predict or experimentally determine vapor-liquid equilibrium data in order to adequately perform distillation calculations. These data need to relate composition, temperature, and system pressure. [Pg.1]

Figure 8-2 illustrates a typical normal volatility vapor-liquid equilibrium curve for a particular component of interest in a distillation separation, usually for the more volatile of the binary mixture, or the one where separation is important in a multicomponent mixture. [Pg.2]

Most batch distillations/separations are assumed to follow the constant relative volatility vapor-liquid equilibrium curve of... [Pg.47]

Multicomponent distillations are more complicated than binary systems due primarily to the actual or potential involvement or interaction of one or more components of the multicomponent system on other components of the mixture. These interactions may be in the form of vapor-liquid equilibriums such as azeotrope formation, or chemical reaction, etc., any of which may affect the activity relations, and hence deviations from ideal relationships. For example, some systems are known to have two azeotrope combinations in the distillation column. Sometimes these, one or all, can be broken or changed in the vapor pressure relationships by addition of a third chemical or hydrocarbon. [Pg.68]

Figure 4.3 Vapor-liquid equilibrium for a binary mixture of benzene and toluene at a pressure of 1 atm. (From Smith R and Jobson M, 2000, Distillation, Encyclopedia of Separation Science, Academic Press reproduced by permission). Figure 4.3 Vapor-liquid equilibrium for a binary mixture of benzene and toluene at a pressure of 1 atm. (From Smith R and Jobson M, 2000, Distillation, Encyclopedia of Separation Science, Academic Press reproduced by permission).
A binary mixture is to be separated by distillation into relatively pure products. Where in the distillation column is the vapor-liquid equilibrium data required at the highest accuracy ... [Pg.178]

A distillation calculation is to be performed on a multicomponent mixture. The vapor-liquid equilibrium for this mixture is likely to exhibit significant departures from ideality, but a complete set of binary interaction parameters is not available. What factors would you consider in assessing whether the missing interaction parameters are likely to have an important effect on the calculations ... [Pg.178]

Assuming the vapor-liquid equilibrium to be ideal, at what pressure would the distillation column have to operate on the basis of the temperature in the condenser ... [Pg.178]

A vapor-liquid equilibrium calculation shows that a good separation is obtained but the required product purity of butadiene <0.5 wt% and sulfur dioxide <0.3 wt% is not obtained. Further separation of the liquid is needed. Distillation of the liquid is difficult because of the narrow temperature limits between which the distillation must operate. However, the liquid can be stripped using nitrogen (Figure 14.21c). [Pg.308]

Figure 12-18 Catalytic distillation reactor in which catalyst in the distil- t. lation column combines chemical reaction with vapor-liquid equilibrium in the column to achieve conversions higher than obtainahle with a reactor alone. Figure 12-18 Catalytic distillation reactor in which catalyst in the distil- t. lation column combines chemical reaction with vapor-liquid equilibrium in the column to achieve conversions higher than obtainahle with a reactor alone.
The proper design of distillation and absorption columns depends on knowledge of vapor—liquid equilibrium, as do flash calculations used to determine the physical state of streams at given conditions of temperature, pressure, and composition. Detailed treatments of vapor—liquid equilibria are available (6,7). [Pg.499]

The topic covered in the 10 papers of the first section is commonly referred to as salt effect in vapor-liquid equilibrium and is potentially of great industrial importance. This salt effect leads to extractive distillation processes in which a dissolved salt replaces a liquid additive as the separating agent the replacement often results in a greatly improved separating ability and reduced energy requirements. Two papers in this volume, those by Sloan and by Vaillancourt, illustrate the use of such processing to concentrate nitric acid from its aqueous azeotrope. Nevertheless, the effect has not been exploited by industry to nearly the extent that would seem to be merited by its scientific promise. [Pg.7]

The effect of salts on the vapor-liquid equilibrium of solvent mixtures has been of considerable interest in recent years. Introduction of a salt into a binary solvent mixture results in a change in the relative volatility of the solvents. This effect can be used to an advantage where the separation of the solvents is of interest. Furter and co-workers have demonstrated the potential importance of salts as separating agents in extractive distillation (J, 2, 3). [Pg.9]

The use of a dissolved salt in place of a liquid component as the separating agent in extractive distillation has strong advantages in certain systems with respect to both increased separation efficiency and reduced energy requirements. A principal reason why such a technique has not undergone more intensive development or seen more than specialized industrial use is that the solution thermodynamics of salt effect in vapor-liquid equilibrium are complex, and are still not well understood. However, even small amounts of certain salts present in the liquid phase of certain systems can exert profound effects on equilibrium vapor composition, hence on relative volatility, and on azeotropic behavior. Also extractive and azeotropic distillation is not the only important application for the effects of salts on vapor-liquid equilibrium while used as examples, other potential applications of equal importance exist as well. [Pg.32]

The research programs on extractive distillation by salt effect and on salt effect in vapor-liquid equilibrium at the Royal Military College of Canada are supported by the Defence Research Board of Canada, Grant No. 9530-142. [Pg.40]

Separation processes which involve non-volatile salts arise in two situations. First, as an alternative to extractive or azeotropic distillation, salts may be added to a system to alter the vapor-liquid equilibrium behavior. Second, there are cases where a salt is generated in the process before final product purification. For example, product streams from processes involving esterification, etherification, or neutralization contain salts and are often fed to separation units such as distillation or stripping columns. [Pg.42]

Vapor-liquid equilibrium experiments were performed with an improved Othmer recirculation still as modified by Johnson and Furter (2). Temperatures were measured with Fisher thermometers calibrated against boiling points of known solutions. Equilibrium compositions were determined with a vapor fractometer using a type W column and a thermal conductivity detector. The liquid samples were distilled to remove the salt before analysis with the gas chromatograph the amount of salt present was calculated from the molality and the amount of solvent 2 present. Temperature measurements were accurate to 0.2°C while compositions were found to be accurate to 1% over most of the composition range. The system pressure was maintained at 1 atm. 1 mm... [Pg.46]

The purpose of this chapter is to explain what is meant by the terms bubble point and dew point, and how we can use these ideas to improve the operation of the distillation tower. To begin, we will derive the bubble-point equation, from the basic statement of vapor-liquid equilibrium ... [Pg.107]

In the usual distillation problem, the operating pressure, the feed composition and thermal condition, and the desired product compositions are specified. Then the relations between the reflux rates and the number of trays above and below the feed can be found by solution of the material and energy balance equations together with a vapor-liquid equilibrium relation, which may be written in the general form... [Pg.380]

The calculations made thus far are of theoretical trays, that is, trays on which vapor-liquid equilibrium is attained for all components. Actual tray efficiencies vary widely with the kind of system, the flow rates, and the tray construction. The range can be from less than 10% to more than 100% and constitutes perhaps the greatest uncertainty in the design of distillation equipment. For hydrocarbon fractionation a commonly used efficiency is about 60%. Section 13.14 discusses this topic more fully. [Pg.397]

Measurements of binary vapor-liquid equilibria can be expressed in terms of activity coefficients, and then correlated by the Wilson or other suitable equation. Data on all possible pairs of components can be combined to represent the vapor-liquid behavior of the complete mixture. For exploratory purposes, several rapid experimental techniques are applicable. For example, differential ebulliometry can obtain data for several systems in one laboratory day, from which infinite dilution activity coefficients can be calculated and then used to evaluate the parameters of correlating equations. Chromatography also is a well-developed rapid technique for vapor-liquid equilibrium measurement of extractive distillation systems. The low-boiling solvent is deposited on an inert carrier to serve as the adsorbent. The mathematics is known from which the relative volatility of a pair of substances can be calculated from the effluent trace of the elutriated stream. Some of the literature of these two techniques is cited by Walas (1985, pp. 216-217). [Pg.417]

Distillation of Ammonium Bicarbonate Solutions. Vapor-liquid equilibrium data for ammonium bicarbonate solutions at the boil are apparently not available in the literature. The data in the literature, however, do indicate that when the temperature of such a solution is increased, or the pressure on it decreased, the gas that is evolved is predominantly carbon dioxide. Thus, it appears that such a distillation would be two consecutive processes first, a steam stripping of the carbon dioxide in the solution, followed by a distillation of ammonia from an ammonia-water mixture containing perhaps some carbon dioxide. Possibly the ammonia, carbon dioxide, and water in the distillate product would recombine completely in the condenser to form an ammonium bicarbonate solution. Perhaps an absorption tower would be necessary to effect the recombination. [Pg.190]

Reflux Rate. The optimum reflux rate for a distillation column depends on the value of energy, but is generally between 1.05 times and 1.25 times the reflux rate, which could be used with infinite trays. At this level, excess reflux is a secondary contributor to column inefficiency. However, when designing to this tolerance, correct vapor—liquid equilibrium data and adequate controls are essential. [Pg.229]

In any membrane process, it is desirable for the minor components to permeate the membrane, so the acetone-selective silicone rubber membrane is best used to treat dilute acetone feed streams, concentrating most of the acetone in a small volume of permeate. The water-selective poly(vinyl alcohol) membrane is best used to treat concentrated acetone feed streams, concentrating most of the water in a small volume of permeate. Both membranes are more selective than distillation, which relies on the vapor-liquid equilibrium to achieve separation. [Pg.364]

Several hundred plants have been installed for the dehydration of ethanol by pervaporation. This is a particularly favorable application for pervaporation because ethanol forms an azeotrope with water at 95 % and a 99.5 % pure product is needed. Because the azeotrope forms at 95 % ethanol, simple distillation does not work. A comparison of the separation of ethanol and water obtained by various pervaporation membranes and the vapor-liquid equilibrium line that controls separation obtained by distillation is shown in Figure 9.9 [40], The membranes... [Pg.372]


See other pages where Distillation vapor-liquid equilibrium is mentioned: [Pg.70]    [Pg.70]    [Pg.1247]    [Pg.1294]    [Pg.1318]    [Pg.166]    [Pg.178]    [Pg.235]    [Pg.235]    [Pg.238]    [Pg.240]    [Pg.240]    [Pg.243]    [Pg.89]    [Pg.259]    [Pg.16]    [Pg.404]    [Pg.33]    [Pg.106]    [Pg.153]   
See also in sourсe #XX -- [ Pg.509 , Pg.510 , Pg.511 , Pg.512 , Pg.529 , Pg.530 ]




SEARCH



Azeotropic distillation vapor-liquid equilibrium data

Equilibrium liquid-vapor

Extractive distillation vapor liquid equilibria

Liquid distillation

Simple distillation liquid-vapor equilibrium

Vapor distillate

Vapor equilibria

Vapor-liquid equilibrium differential distillation

Vapor-liquid equilibrium distillation column, design

Vapor-liquid equilibrium equilibria

Vapor-liquid equilibrium multicomponent distillation

Vaporization distillation

© 2024 chempedia.info