Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Validation feasibility

Mechanism Criteria. QSARs should ideally have a physico-chemical or biological basis and toxicological pathway. Because mechanisms of chemical metabolism and intoxication in mammals are not known for the majority of chemicals, the validity feasibility of assessing toxicity endpoints is limited for many chemicals. Many experts contend that health endpoint QSARs should ideally only be applied to chemicals with a mechanism of action consistent with the domain of the training set. Interpolation within the domain is the best use extrapolation beyond it may lead to spurious, indefensible results. Some models (e.g., TOPKAT) provide cautionary indications for predictions of chemical activity beyond the domain of the training set. [Pg.2681]

The perturbation theory described in section Al.5.2,1 fails completely at short range. One reason for the failure is that the multipole expansion breaks down, but this is not a fiindamental limitation because it is feasible to construct a non-expanded , long-range, perturbation theory which does not use the multipole expansion [6], A more profound reason for the failure is that the polarization approximation of zero overlap is no longer valid at short range. [Pg.195]

Ideally, the results should be validated somehow. One of the best methods for doing this is to make predictions for compounds known to be active that were not included in the training set. It is also desirable to eliminate compounds that are statistical outliers in the training set. Unfortunately, some studies, such as drug activity prediction, may not have enough known active compounds to make this step feasible. In this case, the estimated error in prediction should be increased accordingly. [Pg.248]

The method of standard additions can be used to check the validity of an external standardization when matrix matching is not feasible. To do this, a normal calibration curve of Sjtand versus Cs is constructed, and the value of k is determined from its slope. A standard additions calibration curve is then constructed using equation 5.6, plotting the data as shown in Figure 5.7(b). The slope of this standard additions calibration curve gives an independent determination of k. If the two values of k are identical, then any difference between the sample s matrix and that of the external standards can be ignored. When the values of k are different, a proportional determinate error is introduced if the normal calibration curve is used. [Pg.115]

Our approach to the problem of gelation proceeds through two stages First we consider the probability that AA and BB polymerize until all chain segments are capped by an Aj- monomer then we consider the probability that these are connected together to form a network. The actual molecular processes occur at random and not in this sequence, but mathematical analysis is feasible if we consider the process in stages. As long as the same sort of structure results from both the random and the subdivided processes, the analysis is valid. [Pg.316]

Manufacturing and technical feasibility of new component design solutions need to be validated... [Pg.306]

Following development of the study direction, the evaluation describes the efforts of obtaining and validating process information, and then discusses equipment specifications and a cost estimate of the feasibility or budget type i.e., with plant costs factored from major material. Finally, project economics and financing complete the evaluation. [Pg.213]

In summary, modem synthetic methodology allows the stereoselective generation of one, two, or even more stereocenters in a single reaction with or without spatial control by the substrate. The application of transforms to retrosynthetic simplification of stereochemistry requires the selection of transforms on the basis of both structural and stereochemical information in the target and also validation of the corresponding synthetic processes by analysis for both chemical feasibility and stereoselectivity. [Pg.51]

Sometimes it is just not feasible to assemble any validation samples. In such cases there are still other tests, such as cross-validation, which can help us do a certain amount of validation of a calibration. However, these tests do not provide the level of information nor the level of confidence that we should have before placing a calibration into service. More about this later. [Pg.23]

Another simple approach assumes temperature-dependent AH and AS and a nonlinear dependence of log k on T (123, 124, 130). When this dependence is assumed in a particular form, a linear relation between AH and AS can arise for a given temperature interval. This condition is met, for example, when ACp = aT" (124, 213). Further theoretical derivatives of general validity have also been attempted besides the early work (20, 29-32), particularly the treatment of Riietschi (96) in the framework of statistical mechanics and of Thorn (125) in thermodynamics are to be mentioned. All of the too general derivations in their utmost consequences predict isokinetic behavior for any reaction series, and this prediction is clearly at variance with the facts. Only Riietschi s theory makes allowance for nonisokinetic behavior (96), and Thorn first attempted to define the reaction series in terms of monotonicity of AS and AH (125, 209). It follows further from pure thermodynamics that a qualitative compensation effect (not exactly a linear dependence) is to be expected either for constant volume or for constant pressure parameters in all cases, when the free energy changes only slightly (214). The reaction series would thus be defined by small differences in reactivity. However, any more definite prediction, whether the isokinetic relationship will hold or not, seems not to be feasible at present. [Pg.461]

Follow the above procedures, we obtained the friction coefficient of the unclean single crystal Si surface is about 0.06, which agrees very well with the result obtained under the same experimental condition by Bhushan et al. It is validated with the feasibility of the calibration method. Based on the friction coefficient, we can easily obtain the friction forces under the loads. [Pg.191]

The validity of the model is tested against the experiment. A ISOOcc canister, which is produced by UNICK Ltd. in Korea, is used for model validation experiment. In the case of adsorption, 2.4//min butane and 2.4//min N2 as a carrier gas simultaneously enter the canister and 2.1//min air flows into canister with a reverse direction during desorption. These are the same conditions as the products feasibility test of UNICK Ltd. The comparison between the simulation and experiment showed the validity of our model as in Fig. 5. The amount of fuel gas in the canister can be predicted with reasonable accuracy. Thus, the developed model is shown to be effective to simulate the behavior of adsorption/desorption of actual ORVR system. [Pg.704]

In summary, the branch-and-bound algorithm as defined in this chapter assumes that the semantics of objective function, feasibility, and branching operation are fixed with respect to the problem class. As long as their interpretations are not changed, the derived equivalence and dominance rules would remain valid. [Pg.317]

Owing to the high concentration applied (0.5 M), the Lambert-Beer law is no longer valid [72, 74]. Therefore, absorption coefficients were derived experimentally as described in detail in [72]. These measurements took advantage of having the thin layers in the micro reactor, i.e. they would not have been feasible in conventional cuvettes. [Pg.551]

The enforcement method must be suitable for the determination of all compounds included in the residue definition in order to enable Member States to determine compliance with MRLs. It is not feasible to validate a method for all commodities if a wide range of MRLs are set. Therefore, a concept of crop groups was developed in SANCO/825/00. The following crop groups with representative crops are presented ... [Pg.28]

In summary, the proposal of an appropriate definition of the residue is not a process which follows simple and unambiguous rules in each case. The differences between residue definitions of some European MRLs and US tolerances illustrate the importance of harmonization. However, the great effort sometimes necessary to reach a suitable and accepted residue definition, which considers the needs of risk assessors (toxicologists) and the feasibility aspects of residue analysts, is clearly a vital prerequisite for any method development and validation. [Pg.99]

Application of the test substance to the test system is without doubt the most critical step of the residue field trial. Under-application may be corrected, if possible and if approved by the Study Director, by making a follow-up application if the error becomes known shortly after the application has been made. Over-application errors can usually only be corrected by starting the trial again. The Study Director must be contacted as soon as an error of this nature is detected. Immediate communication allows for the most feasible options to be considered in resolving the error. If application errors are not detected at the time of the application, the samples from such a trial can easily become the source of undesirable variability when the final analysis results are known. Because the application is critical, the PI must calculate and verify the data that will constitute the application information for the trial. If the test substance weight, the spray volume, the delivery rate, the size of the plot, and the travel speed for the application are carefully determined and then validated prior to the application, problems will seldom arise. With the advent of new tools such as computers and hand-held calculators, the errors traditionally associated with applications to small plot trials should be minimized in the future. The following paragraphs outline some of the important considerations for each of the phases of the application. [Pg.155]

The final step of method development is validation of the HPLC method. Optimisation of chromatographic selectivity [110], performance verification testing of HPLC equipment [591], validation of computerised LC systems [592] and validation of analysis results using HPLC-PDA [34] were reported. The feasibility of automated validation of HPLC methods has been demonstrated [593]. Interlaboratory transfer of HPLC methods has been described [594]. [Pg.245]

Whereas the components of (known) test mixtures can be attributed on the basis of APCI+/, spectra, it is quite doubtful that this is equally feasible for unknown (real-life) extracts. Data acquisition conditions of LC-APCI-MS need to be optimised for existing universal LC separation protocols. User-specific databases of reference spectra need to be generated, and knowledge about the fragmentation rules of APCI-MS needs to be developed for the identification of unknown additives in polymers. Method development requires validation by comparison with established analytical tools. Extension to a quantitative method appears feasible. Despite the current wide spread of LC-API-MS equipment, relatively few industrial users, such as ICI, Sumitomo, Ford, GE, Solvay and DSM, appear to be somehow committed to this technique for (routine) polymer/additive analysis. [Pg.519]

Both the determination of the effective number of scatterers and the associated rescaling of variances are still in progress within BUSTER. The value of n at the moment is fixed by the user at input preparation time for charge density studies, variances are also kept fixed and set equal to the observational c2. An approximate optimal n can be determined empirically by means of several test runs on synthetic data, monitoring the rms deviation of the final density from the reference model density (see below). This is of course only feasible when using synthetic data, for which the perfect answer is known. We plan to overcome this limitation in the future by means of cross-validation methods. [Pg.28]


See other pages where Validation feasibility is mentioned: [Pg.317]    [Pg.178]    [Pg.206]    [Pg.653]    [Pg.317]    [Pg.178]    [Pg.206]    [Pg.653]    [Pg.2]    [Pg.74]    [Pg.237]    [Pg.486]    [Pg.291]    [Pg.276]    [Pg.227]    [Pg.41]    [Pg.7]    [Pg.215]    [Pg.318]    [Pg.80]    [Pg.539]    [Pg.197]    [Pg.114]    [Pg.130]    [Pg.1064]    [Pg.59]    [Pg.278]    [Pg.50]    [Pg.155]    [Pg.231]    [Pg.244]    [Pg.42]    [Pg.68]    [Pg.922]    [Pg.6]   
See also in sourсe #XX -- [ Pg.134 , Pg.142 ]




SEARCH



Feasible

© 2024 chempedia.info