Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetravalent metals

In analogous reactions arylmetal compounds of thallium (ArTICl, addition of Tl-Na alloy, Nesmeyanov and Makarova, 1952), of tin (Ar2SnCl2, addition of Sn, Nesmeyanov et al., 1936), of lead (Ar4Pb, Pb-Na alloy, Nesmeyanov and Makarova, 1954 Nesmeyanov et al., 1954) were obtained (yields up to 80% with Hg, 10-40% with the other metals). Tetravalent metal salts often react to give a mixture of partially arylated metal chlorides (ArwMCl4 , n = 1 to 3). Waters (1939) was one of the few chemists outside Nesmeyanov s school who worked on that subject (arylation of lead). [Pg.274]

Vanadium predpitates the metal from solutions of salts of gold, silver, platinum, and iridium, and reduces solutions of mercuric chloride, cupric chloride and ferric chloride to mercurous chloride, cuprous chloride, and ferrous chloride, respectively. In these reactions the vanadium passes into solution as the tetravalent ion. No precipitation or reduction ensues, however, when vanadium is added to solutions of divalent salts of zinc, cadmium, nickel, and lead. From these reactions it has been estimated that the electrolytic potential of the change, vanadium (metal)—>-tetravalent ions, is about —0 3 to —0 4 volt, which is approximately equal to the electrolytic solution pressure of copper. This figure is a little uncertain through the difficulty of securing pure vanadium.5... [Pg.34]

Masking by oxidation or reduction of a metal ion to a state which does not react with EDTA is occasionally of value. For example, Fe(III) (log K- y 24.23) in acidic media may be reduced to Fe(II) (log K-yyy = 14.33) by ascorbic acid in this state iron does not interfere in the titration of some trivalent and tetravalent ions in strong acidic medium (pH 0 to 2). Similarly, Hg(II) can be reduced to the metal. In favorable conditions, Cr(III) may be oxidized by alkaline peroxide to chromate which does not complex with EDTA. [Pg.1170]

Tetravalent lead is obtained when the metal is subjected to strong oxidizing action, such as in the electrolytic oxidation of lead anodes to lead dioxide, Pb02 when bivalent lead compounds are subjected to powerful oxidizing conditions, as in the calcination of lead monoxide to lead tetroxide, Pb O or by wet oxidation of bivalent lead ions to lead dioxide by chlorine water. The inorganic compounds of tetravalent lead are relatively unstable eg, in the presence of water they hydrolyze to give lead dioxide. [Pg.67]

Representative compounds for the +4 oxidation state are shown in Figure 4. The violet tetravalent molybdenum dioxide [18868-43 ] M0O2, is formed by the reduction of M0O3 with H2 at temperatures below which Mo metal is formed or M0O3 is volatile (ca 450°C). MoCl [13320-71 -3] is formed upon treatment of M0O2 at 250°C with CCl (see Fig. 1). [Pg.471]

Group 3 (IIIB) and Inner Transition-Metal Perchlorates. The rare-earth metal perchlorates of yttrium and lanthanum have been reported (53). Tetravalent cerium perchlorate [14338-93-3] 06(0.04)4, and uranium perchlorate have also been identified (54). [Pg.66]

Rhenium Halides and Halide Complexes. Rhenium reacts with chlorine at ca 600°C to produce rheniumpentachloride [39368-69-9], Re2Cl2Q, a volatile species that is dimeric via bridging hahde groups. Rhenium reacts with elemental bromine in a similar fashion, but the metal is unreactive toward iodine. The compounds ReCl, ReBr [36753-03-4], and Rel [59301-47-2] can be prepared by careful evaporation of a solution of HReO and HX. Substantiation in a modem laboratory would be desirable. Lower oxidation state hahdes (Re X ) are also prepared from the pentavalent or tetravalent compounds by thermal decomposition or chemical reduction. [Pg.164]

Multilayers of Diphosphates. One way to find surface reactions that may lead to the formation of SAMs is to look for reactions that result in an insoluble salt. This is the case for phosphate monolayers, based on their highly insoluble salts with tetravalent transition metal ions. In these salts, the phosphates form layer stmctures, one OH group sticking to either side. Thus, replacing the OH with an alkyl chain to form the alkyl phosphonic acid was expected to result in a bilayer stmcture with alkyl chains extending from both sides of the metal phosphate sheet (335). When zirconium (TV) is used the distance between next neighbor alkyl chains is - 0.53 nm, which forces either chain disorder or chain tilt so that VDW attractive interactions can be reestablished. [Pg.543]

In the area of superconductivity, tetravalent thorium is used to replace trivalent lanthanides in n-ty e doped superconductors, R2 Th Cu0 g, where R = Pr, Nd, or Sm, producing a higher T superconductor. Thorium also forms alloys with a wide variety of metals. In particular, thorium is used in magnesium alloys to extend the temperature range over which stmctural properties are exhibited that are useful for the aircraft industry. More detailed discussions on thorium alloys are available (8,19). [Pg.36]

The introduction of divalent calcium and barium oxides into frits in preference to monovalent sodium and potassium generally increases water resistance. Furthermore, oxides of tetravalent and pentavalent metals have a favourable effect on the resistance of glasses and enamels to water. The influence of B2O3 and fluorine in the frit upon chemical resistance is variable and is dependent upon the content of them and the balance of the frit constituents, but they usually cause a diminution in resistance. In general, mill-added clay, silica and opaciher increase water resistance provided the firing or fusing of the enamel is at the optimum. [Pg.743]

No available data was found on the precipitation from fluoride solutions of niobium and tantalum fluoride compounds containing tri- and tetravalent metals. [Pg.19]

Comparison of these results for plutonium with those for other tetravalent metals reveals some interesting facts. Thor-ium(IV), uranium(IV) and neptunium(IV) sulfates have been investigated under hydrothermal hydrolytic conditions. For uranium, the stable phases which have been reported include U(0H)2S0i (2), U60i, (OH)i, (SO.,) 6 (2). U (SOi,) 2 4H20 (23) and IKSO (24). [Pg.55]

The only crystalline phase which has been isolated has the formula Pu2(OH)2(SO )3(HaO). The appearance of this phase is quite remarkable because under similar conditions the other actinides which have been examined form phases of different composition (M(OH)2SOit, M=Th,U,Np). Thus, plutonium apparently lies at that point in the actinide series where the actinide contraction influences the chemistry such that elements in identical oxidation states will behave differently. The chemistry of plutonium in this system resembles that of zirconium and hafnium more than that of the lighter tetravalent actinides. Structural studies do reveal a common feature among the various hydroxysulfate compounds, however, i.e., the existence of double hydroxide bridges between metal atoms. This structural feature persists from zirconium through plutonium for compounds of stoichiometry M(OH)2SOit to M2 (OH) 2 (S0O 3 (H20) i,. Spectroscopic studies show similarities between Pu2 (OH) 2 (SOO 3 (H20) i, and the Pu(IV) polymer and suggest that common structural features may be present. [Pg.67]

Tin amidinates display a rich coordination chemistry with the metal in both the di- and tetravalent oxidation states. The first results in this area were mainly obtained with N-silylated benzamidinate ligands. Typical reactions are summarized in Scheme 48. A stannylene containing unsymmetrically substituted amidinate ligands, [o-MeC6H4C(NSiMe3)(NPh)]2Sn, has been prepared accordingly and isolated in the form of colorless crystals in 75% yield. ... [Pg.221]

Like mercury, tin is a metal that has a tendency to form covalent bonds with organic groups. The compounds to be discussed here are tributyl derivatives of tetravalent tin. The general formula for them is... [Pg.172]

Although it is possible, by the loss of several electrons, for certain metal atoms to form polyvalent cations upto a maximum valency of four (e.g., tin forms the tetravalent stannic ion, Sn4+), the formation of polyvalent anions is extremely difficult since for the acquisition of each additional electron the attractive force exerted by the nucleus on each individual electron becomes progressively smaller. It is for this reason that the maximum valency for a simple anion is found to be two. [Pg.7]

The extractant is octyl pyrophosphoric acid (OPPA process). The stripping is by concentrated hydrofluoric acid. Yields UF4. Extracts uranium in tetravalent state. It is, therefore, necessary to use metallic iron as a reducing agent. [Pg.552]

An example of the process of a passivating metal is the reaction of tetravalent cerium with iron (see Fig. 5.54D). Iron that has not been previously passivated dissolves in an acid solution containing tetravalent cerium ions, in an active state at a potential of Emix2. After previous passivation, the rate of corrosion is governed by the corrosion current ya and the potential assumes a value of Emixl. [Pg.394]

Physical properties of binary or ternary Ru/Ir based mixed oxides with valve metal additions is still a field which deserves further research. The complexity of this matter has been demonstrated by Triggs [49] on (Ru,Ti)Ox who has shown, using XPS and other techniques (UPS, Mossbauer, Absorption, Conductivity), that Ru in TiOz (Ti rich phase) adopts different valence states depending on the environment. Possible donors or acceptors are compensated by Ru in the respective valence state. Trivalent donors are compensated by Ru5+, pentavalent acceptors will be compensated by Ru3+ or even Ru2+. In pure TiOz ruthenium adopts the tetravalent state. The surface composition of the titanium rich phase (2% Ru) was found to be identical to the nominal composition. [Pg.95]

This view is supported by the types of compounds that can be prepared. Group IVa metals in the tetravalent state have no d electrons and tetra-valent vanadium has one. Compounds with a large number of d electrons, e.g., nickel, do not form benzyl compounds readily and attempts to synthesize Ni (benzyl) 2 have not succeeded. [Pg.278]


See other pages where Tetravalent metals is mentioned: [Pg.809]    [Pg.156]    [Pg.809]    [Pg.156]    [Pg.230]    [Pg.540]    [Pg.68]    [Pg.469]    [Pg.329]    [Pg.272]    [Pg.167]    [Pg.111]    [Pg.91]    [Pg.17]    [Pg.135]    [Pg.155]    [Pg.236]    [Pg.61]    [Pg.153]    [Pg.446]    [Pg.458]    [Pg.471]    [Pg.474]    [Pg.476]    [Pg.398]    [Pg.322]    [Pg.322]    [Pg.783]    [Pg.390]    [Pg.99]    [Pg.185]    [Pg.276]    [Pg.130]   
See also in sourсe #XX -- [ Pg.17 , Pg.46 , Pg.61 , Pg.64 , Pg.146 , Pg.171 ]




SEARCH



Tetravalence

Tetravalent

© 2024 chempedia.info