Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultraviolet spectroscopy, use

Dbrr, F., Held, M. (I960), Ultraviolet Spectroscopy using Polarized Light, Angew. Chem. 72, 287. [Pg.307]

Visible-ultraviolet spectroscopy Used for assay as well as for molecular structure (as is colorimetry)... [Pg.117]

The focus of this chapter is photon spectroscopy, using ultraviolet, visible, and infrared radiation. Because these techniques use a common set of optical devices for dispersing and focusing the radiation, they often are identified as optical spectroscopies. For convenience we will usually use the simpler term spectroscopy in place of photon spectroscopy or optical spectroscopy however, it should be understood that we are considering only a limited part of a much broader area of analytical methods. Before we examine specific spectroscopic methods, however, we first review the properties of electromagnetic radiation. [Pg.369]

Acrylonitrile has been characterized using infrared, Raman, and ultraviolet spectroscopies, electron diffraction, and mass spectroscopy (10—18). [Pg.181]

Microscopy (qv) plays a key role in examining trace evidence owing to the small size of the evidence and a desire to use nondestmctive testing (qv) techniques whenever possible. Polarizing light microscopy (43,44) is a method of choice for crystalline materials. Microscopy and microchemical analysis techniques (45,46) work well on small samples, are relatively nondestmctive, and are fast. Evidence such as sod, minerals, synthetic fibers, explosive debris, foodstuff, cosmetics (qv), and the like, lend themselves to this technique as do comparison microscopy, refractive index, and density comparisons with known specimens. Other microscopic procedures involving infrared, visible, and ultraviolet spectroscopy (qv) also are used to examine many types of trace evidence. [Pg.487]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

Tungsten is usually identified by atomic spectroscopy. Using optical emission spectroscopy, tungsten in ores can be detected at concentrations of 0.05—0.1%, whereas x-ray spectroscopy detects 0.5—1.0%. ScheeHte in rock formations can be identified by its luminescence under ultraviolet excitation. In a wet-chemical identification method, the ore is fired with sodium carbonate and then treated with hydrochloric acid addition of 2inc, aluminum, or tin produces a beautiful blue color if tungsten is present. [Pg.284]

Solvents and substances that are specified as pure for a particular purpose may, in fact, be quite impure for other uses. Absolute ethanol may contain traces of benzene, which makes it unsuitable for ultraviolet spectroscopy, or plasticizers which make it unsuitable for use in solvent extraction. [Pg.1]

Further aspects of the reaction of aromatic tertiary hydroxyl amines have been examined by more sophisticated techniques [49]. 2-Methyl-2-nitrosopropane was used as a radical trap, and the endgroups on PMMA resulting from its addition were detectable by ultraviolet spectroscopy. Electron spin resonance results on the same system have also been reported [50]. [Pg.835]

The presence of iminium salts can be detected by chemical means or by spectroscopic methods. The chemical means of detecting iminium salts are reactions with nucleophiles and are the subject of this review. The spectroscopic methods are more useful for rapid identification because with the large number of model compounds available now the spectroscopic methods are fast and reliable. The two methods that are used primarily are infrared and nuclear magnetic resonance spectroscopy. Some attempts have been made to determine the presence of iminium salts by ultraviolet spectroscopy, but these are not definitive as yet (14,25). [Pg.176]

Many of the properties oj -hydroxypyridines are typical of phenols. It was long assumed that they existed exclusively in the hydroxy form, and early physical measurements seemed to confirm this. For example, the ultraviolet spectrum of a methanolic solution of 3-hydroxypyridine is very similar to that of the 3-methoxy analog, and the value of the dipole moment of 3-hydroxypyridine obtained in dioxane indicates little, if any, zwitterion formation. However, it has now become clear that the hydroxy form is greatly predominant only in solvents of low dielectric constant. Comparison of the pK values of 3-hydroxypyridine with those of the alternative methylated forms indicated that the two tautomeric forms are of comparable stability in aqueous solution (Table II), and this was confirmed using ultraviolet spectroscopy. The ratios calculated from the ultraviolet spectral data are in good agreement with those de-... [Pg.353]

Sheinker and his collaborators have studied the effect of replacing the hydrogen atoms of the acetamido group with halogen atoms on the tautomeric equilibrium of compounds of this type by using infrared and ultraviolet spectroscopy. Table VII summarizes... [Pg.419]

Recently a definitive study of several isoxazol-5-ones using infrared and ultraviolet spectroscopy (Table I) has shown that the balance between the various tautomers is a delicate one and that all three of the structural types can predominate depending upon the nature of the substituents and the conditions of the experiment. However, the hydroxy form is only found when it is stabilized by chelation (i.e., a carbonyl substituent in the 4-position). The other compounds exist in the CH form in nonpolar media increasing polarity of the solvent stabilizes increasing amounts of the more polar NH forms. [Pg.38]

Benzothiazole-2-thiones are associated,but the predominance of the thione forms (154, R = H, Me) has been demonstrated by ultraviolet spectral comparisons wdth the methylated derivatives of both possible tautomeric forms (cf. reference 182), comparative dipole moment data, and infrared spectral data. " Ultraviolet spectroscopy has also been used to demonstrate that benzoseIenazole-2-thione exists as such. The predominance of the thione form of nonaromatic 3,4-dihydrothiazole-2-ones (155) has also been established on the basis of ultraviolet spectral evidence. ... [Pg.62]

The predominance of the thione forms of imidazole-2-thiones and benzimidazole-2-thiones has been established using ultraviolet spectroscopy, and for the former compounds this conclusion is supported by infrared spectroscopic data. ... [Pg.62]

The widely used technique of light spectroscopy has also been applied to the qual and quant detn of bound N in energetic materials. There are five distinct systems used colorimetry, infrared spectroscopy, polarimetry, Raman spec troscopy and ultraviolet spectroscopy... [Pg.301]

The predominant method of analyzing environmental samples for methyl parathion is by GC. The detection methods most used are FID, FPD, ECD, and mass spectroscopy (MS). HPLC coupled with ultraviolet spectroscopy (UV) or MS has also been used successfiilly. Sample extraction and cleanup varies widely depending on the sample matrix and method of detection. Several analytical methods used to analyze environmental samples for methyl parathion are summarized in Table 7-2. [Pg.178]

Light Stability of Chlorinated Dibenzo-l -dioxins. A known concentration of chlorinated dibenzo-p-dioxin was placed in a quartz 1-cm path length cell. A General Electric R.S. sunlamp was placed either 0.5 or 1.0 meters from the face of the cell. The stability of the chlorinated dibenzo-p-dioxin was monitored using ultraviolet spectroscopy. [Pg.121]

Ultraviolet spectroscopy is used in many clinical laboratories due to its ease of operation and availability. A classical method for theophylline determination in plasma is the one of Schack and Waxier.45 The original method had interferences from phenobarbitol and various xanthine derivatives such as theobromine.46 The modification of the method by Jatlow47 eliminated the interferences from barbituates but included the various... [Pg.36]

The methylxanthines can be determined in foods and biological systems by the chromatographic methods of TLC, GC, HPLC, or CE. Ultraviolet spectroscopy following a separation procedure can also be used. More recently, immunoassay methods have been developed. There is no single best method the analyst must balance the features of each assay with the final requirements for data precision and reproducibility. [Pg.39]

The use of trifluoroethanol as solvent or absorption of the dienone on silica gel promotes the photoconversion of dienones into bicyclic ketenes.<47) For the photolysis<48 60) of (63) it has been shown by low-temperature infrared and ultraviolet spectroscopy that the initial photolysis gives a ketene which can be efficiently trapped by cyclohexylamine or, in the absence of a good nucleophile, thermally rearranges by a OA, + 20) allowed process to a bicyclic ketone (64) ... [Pg.468]

Previous authors have taught the principles of solving organic structures from spectra by using a combination of methods NMR, infrared spectroscopy (IR), ultraviolet spectroscopy (UV) and mass spectrometry (MS). However, the information available from UV and MS is limited in its predictive capability, and IR is useful mainly for determining the presence of functional groups, many of which are also visible in carbon-13 NMR spectra. Additional information such as elemental analysis values or molecular weights is also often presented. [Pg.220]

Ultraviolet spectroscopy is not as useful in detecting the -NC function. Despite its limitation, coeluting isothiocyano compounds are UV active ( 250 nm, e 1200) [27c]. Thus, a UV monitor can be interfaced with an LH-20 or silica column to detect column fractions containing -NCS compounds. Final resolution of enriched mixtures of previously fractionated isonitrile-related compounds is achieved by examining the responses generated by UV and RI detectors coupled in liquid chromatography. [Pg.45]

We have also investigated the kinetics of free radical initiation using azobisisobutyronitrile (AIBN) as the initiator [24]. Using high pressure ultraviolet spectroscopy, it was shown that AIBN decomposes slower in C02 than in a traditional hydrocarbon liquid solvent such as benzene, but with much greater efficiency due to the decreased solvent cage effect in the low viscosity supercritical medium. The conclusion of this work was that C02 is inert to free radicals and therefore represents an excellent solvent for conducting free radical polymerizations. [Pg.112]

The identification of chemical substances by examination of their spectra (singular, spectrum). Both infrared and ultraviolet spectroscopy are used in the study of rubber problems such as identifying the type of polymer or the nature of a contaminant. [Pg.59]

Ultraviolet spectroscopy has been applied to the determination of lead and lead speciation studies [407]. Scaule and Patterson [408] used isotope dilution-mass spectrometry to determine the lead profile in the open North Pacific Ocean. [Pg.191]

Similarly, organic liquids have a variety of applications. For example, hexane, which frequently contains impurities such as aromatic compounds, is used in a variety of applications for extracting non-polar chemicals from samples. The presence of impurities in the hexane may or may not be important for such applications. If, however, the hexane is to be used as a solvent for ultraviolet spectroscopy or for HPLC analysis with UV absorbance or fluorescence detection, the presence of aromatic impurities will render the hexane less transparent in the UV region. It is important to select the appropriate grade for the task you have. As an example, three different specifications for n-hexane ( Distol F , Certified HPLC and Certified AR ), available from Fisher Scientific UK, are shown in Figure 5.5 [10]. You will see that the suppliers provide extra, valuable information in their catalogue. [Pg.127]


See other pages where Ultraviolet spectroscopy, use is mentioned: [Pg.80]    [Pg.43]    [Pg.80]    [Pg.43]    [Pg.200]    [Pg.1125]    [Pg.379]    [Pg.369]    [Pg.370]    [Pg.372]    [Pg.373]    [Pg.381]    [Pg.422]    [Pg.425]    [Pg.19]    [Pg.49]    [Pg.421]    [Pg.1317]    [Pg.120]    [Pg.5]    [Pg.403]    [Pg.257]   


SEARCH



Ultraviolet spectroscopy

© 2024 chempedia.info