Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafiltration control

In open fibers the fiber wall may be a permselective membrane, and uses include dialysis, ultrafiltration, reverse osmosis, Dorman exchange (dialysis), osmotic pumping, pervaporation, gaseous separation, and stream filtration. Alternatively, the fiber wall may act as a catalytic reactor and immobilization of catalyst and enzyme in the wall entity may occur. Loaded fibers are used as sorbents, and in ion exchange and controlled release. Special uses of hoUow fibers include tissue-culture growth, heat exchangers, and others. [Pg.146]

Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired. Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired.
A second factor determining module selection is resistance to fouling. Membrane fouling is a particularly important problem in Hquid separations such as reverse osmosis and ultrafiltration. In gas separation appHcations, fouling is more easily controlled. Hollow-fine fibers are notoriously prone to fouling and can only be used in reverse osmosis appHcations if extensive, costiy feed-solution pretreatment is used to remove ah. particulates. These fibers caimot be used in ultrafiltration appHcations at ah. [Pg.74]

Fouling is controlled by selection of proper membrane materials, pretreatment of feed and membrane, and operating conditions. Control and removal of fouling films is essential for industrial ultrafiltration processes. [Pg.298]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Fermentation Processes. The efficient production of penicillin, yeasts, and single-ceUed protein by fermentation requires defoamers to control gas evolution during the reaction. Animal fats such as lard [61789-99-9] were formerly used as a combined defoamer and nutrient, but now more effective proprietary products are usually employed. Defoamer appHcation technology has also improved. For example, in modem yeast production faciHties, the defoamers are introduced by means of automatic electrode-activated devices. One concern in the use of defoamers in fermentation processes is the potential fouHng of membranes during downstream ultrafiltration (qv). SiHcone antifoams (43,44) seem less troubled by this problem than other materials. [Pg.466]

Reverse Osmosis and Ultrafiltration. Reverse osmosis (qv) (or hyperfiltration) and ultrafilttation (qv) ate pressure driven membrane processes that have become well estabUshed ia pollution control (89—94). There is no sharp distinction between the two both processes remove solutes from solution. Whereas ultrafiltration usually implies the separation of macromolecules from relatively low molecular-weight solvent, reverse osmosis normally refers to the separation of the solute and solvent molecules within the same order of magnitude in molecular weight (95) (see also Membrane technology). [Pg.382]

GAC (or other ultrafiltration medium) and ACF operating in series [101], or the development of ACF with controlled mesoporosity. [Pg.109]

Two other major factors determining module selection are concentration polarisation control and resistance to fouling. Concentration polarisation control is a particularly important issue in liquid separations such as reverse osmosis and ultrafiltration. Hollow-fine-fibre modules are notoriously prone to fouling and concentration polarisation and can be used in reverse osmosis applications only when extensive, costly feed solution pretreatment removes all particulates. These fibres cannot be used in ultrafiltration applications at all. [Pg.374]

Ultrafiltration of heterogenous colloidal suspensions such as citrus juice is complex and many factors other than molecular weight contribute to fouling and permeation. For example, low MW aroma compounds were unevenly distributed in the permeate and retentate in UF in 500 kd MWCO system (10). The authors observed that the 500 kd MWCO UF removed all suspended solids, including pectin and PE. If PE is complexed to pectate in an inactive complex, then it is conceivable that release of PE from pectin with cations will enhance permeation in UF. At optimum salt concentration, less PE activation was observed at lower pH values than at higher pH (15). In juice systems, it is difficult to separate the effect of juice particulates on PE activity. Model studies with PE extracts allows UF in the absence of large or insoluble particulates and control of composition of the ultrafilter. In... [Pg.478]

Presently, the precise determination of the true dissolved Th fraction in water samples remains a challenge. Results from ultrafiltration experiments on organic-rich water samples from the Mengong river tend to demonstrate that Th concentration is less than 15 ng/L in absence of DOC (Table 2 and Viers et al. 1997), and that Th is still controlled by organic carbon in the final filtrate of the ultrafiltration experiments. The latter conclusion is also supported by the results obtained for the Kalix river (Porcelli et al. 2001). These results therefore not only raised the question of the determination of the amount of dissolved Th in water but also of the nature of Th chemical speciation. [Pg.560]

In addition to excess sodium intake, abnormal renal sodium retention may be the primary event in the development of hypertension, and it includes abnormalities in the pressure-natriuresis mechanism. In hypertensive individuals, this theory proposes a shift in the control mechanism preventing the normalization of blood pressure. The mechanisms behind the resetting of the pressure-natriuresis curve may include afferent arteriolar vasoconstriction, decreased glomerular ultrafiltration, or an increase in tubular sodium reabsorption.4 Other theories supporting abnormal renal sodium retention suggest a congenital reduction in the number of nephrons, enhanced renin secretion from nephrons that are ischemic, or an acquired compensatory mechanism for renal sodium retention.9... [Pg.13]

In a study of the bioaccumulation of metals as colloid complexes and free ions by the marine brown shrimp, Penaeus aztecus [29] the colloids were isolated and concentrated from water obtained from Dickinson Bayou, an inlet of Galveston Bay, Texas, using various filtration and ultrafiltration systems equipped with a spiral-wound 1 kDa cutoff cartridge. The total colloidal organic carbon in the concentrate was found to be 78 lmgdm 3. The shrimps were exposed to metals (Mn, Fe, Co, Zn, Cd, Ag, Sn, Ba and Hg) as radiolabelled colloid complexes, and free-ionic radiotracers using ultrafiltered seawater without radiotracers as controls. The experiments were designed so that the animals were exposed to environmentally realistic metal and colloid concentrations. [Pg.367]

Cellophane is frequently used for dialysis and it has a pore size of approximately 4—8 gm, which makes it impermeable to molecules with a relative molecular mass in excess of about 10 000. The development of a variety of membrane materials in which the pore size is much more rigorously controlled, has led to wider applications of ultrafiltration (Table 3.11). Various cellulose and polycarbonate membranes are available with pore sizes down to 5 nm which are capable of excluding molecules with a relative molecular mass of about 50. The internal structure of such membranes, as well as the pore size, determines their exclusion range and as a result precise specifications of membranes vary from one manufacturer to another. [Pg.148]

The thermodynamic approach does not make explicit the effects of concentration at the membrane. A good deal of the analysis of concentration polarisation given for ultrafiltration also applies to reverse osmosis. The control of the boundary layer is just as important. The main effects of concentration polarisation in this case are, however, a reduced value of solvent permeation rate as a result of an increased osmotic pressure at the membrane surface given in equation 8.37, and a decrease in solute rejection given in equation 8.38. In many applications it is usual to pretreat feeds in order to remove colloidal material before reverse osmosis. The components which must then be retained by reverse osmosis have higher diffusion coefficients than those encountered in ultrafiltration. Hence, the polarisation modulus given in equation 8.14 is lower, and the concentration of solutes at the membrane seldom results in the formation of a gel. For the case of turbulent flow the Dittus-Boelter correlation may be used, as was the case for ultrafiltration giving a polarisation modulus of ... [Pg.455]

Blatt, W. F., Dravid, A., Michaels, A. S. and Nelson, L. In Membrane Science and Technology, Flinn, J. E. (ed.) (Plenum, New York, 1970). Solute polarisation and cake formation in membrane ultrafiltration Causes, consequences and control techniques. [Pg.473]

The removal of protein by filtration is a convenient way to avoid the interference of protein in the NMR measurement. However, this method requires that the analyte is not physically associated with the protein otherwise, ultrafiltration will remove the analyte along with the protein. In addition, extractables from the devices employed to remove the protein may be introduced into the sample. Therefore, proper controls must be prepared and analyzed. Despite these... [Pg.315]

With anodic oxidation very controlled and narrow pore size distributions can be obtained. These membranes mounted in a small module may be suitable for ultrafiltration, gas separation with Knudsen diffusion and in biological applications. At present one of the main disadvantages is that the layer has to be supported by a separate layer to produce the complete membrane/support structure. Thus, presently applications are limited to laboratory-scale separations since large surface area modules of such membranes are unavailable. [Pg.49]

Perhaps the most viable short-term use for dendritic macromolecules lies in their use as novel catalytic systems since it offers the possibility to combine the activity of small molecule catalysts with the isolation benefits of crosslinked polymeric systems. These potential advantages are intimately connected with the ability to control the number and nature of the surface functional groups. Unlike linear or crosslinked polymers where catalytic sites may be buried within the random coil structure, all the catalytic sites can be precisely located at the chain ends, or periphery, of the dendrimer. This maximizes the activity of each individual catalytic site and leads to activities approaching small molecule systems. However the well defined and monodisperse size of dendrimers permits their easy separation by ultrafiltration and leads to the recovery of catalyst-free products. The first examples of such dendrimer catalysts have recently been reported... [Pg.152]


See other pages where Ultrafiltration control is mentioned: [Pg.61]    [Pg.61]    [Pg.521]    [Pg.61]    [Pg.61]    [Pg.521]    [Pg.208]    [Pg.355]    [Pg.69]    [Pg.33]    [Pg.33]    [Pg.2046]    [Pg.10]    [Pg.352]    [Pg.351]    [Pg.371]    [Pg.180]    [Pg.57]    [Pg.561]    [Pg.382]    [Pg.396]    [Pg.415]    [Pg.69]    [Pg.165]    [Pg.339]    [Pg.398]    [Pg.239]    [Pg.148]    [Pg.169]    [Pg.39]    [Pg.458]    [Pg.332]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 ]




SEARCH



Ultrafiltrate

Ultrafiltration during hemodialysis, controlling

© 2024 chempedia.info