Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ullmann copper

Even in 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but neady ten years elapsed before a process was developed that could be used commercially. Some of the earlier attempts included hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resin (69). Manganese dioxide showed some catalytic activity (70), and copper ions present in two different valence states were described as catalytically active (71), but copper metal by itself was not active. A variety of catalysts, such as Urushibara or Ullmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aliphatic nitriles did not react using these catalysts (72). Beginning in 1971 a series of patents were issued to The Dow Chemical Company (73) describing the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile in water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide in water with very high conversions and selectivities to acrylamide. [Pg.135]

A halogen atom directly attached to a benzene ring is usually unreactive, unless it is activated by the nature and position of certain other substituent groups. It has been show n by Ullmann, however, that halogen atoms normally of low reactivity will condense with aromatic amines in the presence of an alkali carbonate (to absorb the hydrogen halide formed) and a trace of copper powder or oxide to act as a catalyst. This reaction, known as the Ullmant Condensation, is frequently used to prepare substituted diphenylamines it is exemplified... [Pg.217]

Activated copper bronze. Commercial copper bronze does not always give satisfactory yields in the Ullmann reaction, but uniform results can... [Pg.192]

An interesting reaetion, which is particularly valuable for the preparation of diphenyl derivatives, consists in heating copper powder or, better, copper bronze with an aryl halide (Ullmann reaction), for example ... [Pg.524]

Carbon-oxygen bonds are formed by the Ullmann reaction (- coupling of aryl halides with copper) which has been varied in alkaloid chemistry to produce diaryl ethers instead of biaryls. This is achieved by the use of CuO in basic media (T. Kametani, 1969 R.W. Dos-kotch, 1971). [Pg.294]

Specific diarylamiaes aot easily obtaiaed by the above methods can be prepared by the Ullmann (29) and Chapman (30) reactions. For example, y -chloroaniliae reacts with (9-chloroben2oic acid ia the preseace of potassium carboaate and a catalytic amount of a copper salt to give 2-[(3-chlorophenyl)amiao]ben2oic acid [13278-36-9] which is then decarboxylated on heating to 3-chlorodiphenylamine [101 -17-7]. [Pg.244]

Cl Reactive Blue 19 (9) is prepared by the reaction of bromamine acid (8) with y -aminophenyl-P-hydroxyethylsulfone [5246-57-1] (76) ia water ia the presence of an acid-hinding agent such as sodium bicarbonate and a copper catalyst (Ullmann condensation reaction) and subsequent esterification to form the sulfuric ester. [Pg.318]

An example of the use of copper as a catalyst is Acid Blue 25 [6408-78-2] (Cl 62055) in which l-amino-2-sulfonic-4-bromoanthraquinone is condensed with aniline using copper salts (Ullmann reaction) (314). Another example is oxidation to the tria2ole of Direct YeUow 106 [12222-60-5] (Cl 40300) (315,316). [Pg.386]

Aromatic haUdes do not react easily with phenoxide ions to produce diaryl ethers unless the aromatic haUde is substituted with one or more electron-withdrawing groups, eg, nitro or carboxyl groups. The Ullmann reaction uses finely divided copper or copper salts to cataly2e the reaction of phenoxides with aromatic haUdes to give diaryl ethers. [Pg.426]

An excess of guaiacol is essential. Weston and Adkins have found that the phenol, copper, and air form the active catalyst in the Ullmann reaction. [Pg.51]

Meyers has also reported the use of chiral oxazolines in asymmetric copper-catalyzed Ullmann coupling reactions. For example, treatment of bromooxazoline 50 with activated copper powder in refluxing DMF afforded binaphthyl oxazoline 51 as a 93 7 mixture of atropisomers diastereomerically pure material was obtained in 57% yield after a single recrystallization. Reductive cleavage of the oxazoline groups as described above afforded diol 52 in 88% yield. This methodology has also been applied to the synthesis of biaryl derivatives. [Pg.243]

A variant for the synthesis of diaryl ethers—e.g. diphenyl ether 9, where an aryl halide and a phenoxide are reacted in the presence of copper or a copper-(I) salt, is called the Ullmann ether synthesis. ... [Pg.293]

The first series of soluble oligo(/ ara-phenylene)s OPVs 24 were generated by Kern and Wirth [48] and shortly after by Heitz and Ulrich [49]. They introduced alkyl substituents (methyls) in each repeat unit and synthesized oligomers 24 up to the hexamer. Various synthetic methods, like the copper-catalyzed Ullmann coupling, the copper-catalyzed condensation of lithium aryls, and the twofold addition of organomelallic species to cyclohexane-1,4-dione, have been thereby investigated. [Pg.38]

Many reactions have been shown to benefit from irradiation with ultrasound (ref. 19). We therefore decided to investigate the effect of ultrasound, different catalysts and the presence of solids on Ullmann diaryl ether synthesis. Indeed, sonication of mixtures of a phenol and a bromoaromatic compound, in the absence of solvent and presence of copper (I) iodide as catalyst and potassium carbonate as base, produces good yields of diaryl ethers at relatively low temperatures (Fig. 10) (ref 20). [Pg.56]

Vinylic halides can be coupled to give 1,3-butadienes by treatment with activated copper powder in a reaction analogous to the Ullmann reaction (13-14). " This reaction is stereospecific, with retention of configuration at both carbons. [Pg.536]

The coupling of aryl halides with copper is called the Ullmann reaction. The reaction is of broad scope and has been used to prepare many symmetrical and... [Pg.870]

We synthesized uniform CU2O coated Cu nanoparticles from the thermal decomposition of copper acetylacetonate, followed by air oxidation. We successfully used these nanoparticles for the catalysts for Ullmann type amination coupling reactions of aryl chlorides. We synthesized core/shell-like Ni/Pd bimetallic nanoparticles from the consecutive thermal decomposition of metal-surfactant complexes. The nanoparticle catalyst was atom-economically applied for various Sonogashira coupling reactions. [Pg.43]

We investigated the catalytic performance of the CU2O coated copper nanoparticles for Ullmann coupling reactions. When the coupling reactions using aryl bromides such as 2-... [Pg.49]

Cul, 12mol% of 2,2 -dipyridyl, in lOvol of xylene diglyme (9 1) at 140°C with azeotropic removal of the water as it was formed. The azeotropic removal of water helped alleviate the problem of solids coating the reaction vessel walls, which led to stalling of the reaction. The reaction was complete in less than lOh, typically with 96% assay yield and 92% isolated yield for 49 after aqueous work-up and subsequent crystallization [14b-d]. It was noteworthy that this catalytic system composed of the copper(I) salt with bipyridyl ligand was recently reported to be applicable to a wide range of Ullmann-type ether formations [14d]. [Pg.156]

It is worth noting that the Ullmann-Goldberg condensation of aryl halides with phenols and anilines worked efficiently in the presence of copper in water.50 For example, the coupling of 2-chlorobenzoic acid with 4-chlorophenol (K2C03/pyridine/copper powder) gave 2-(4-chlorophenoxy)carboxylic acid (Eq. 6.23).51 The Cu(I)-catalyzed transformation of 2-bromobenzoic acid into salicylic acid has also been studied in aqueous media (Eq. 6.24).52... [Pg.182]

Although the copper mediated Ullmann reaction is a well known method for biaryl synthesis, drastic conditions in the range of 150-280 °C are required. Zerovalent nickel complexes such as bis(l,5-cyclooctadiene)nickel or tetrakis(triphenylphosphine)nickel have been shown to be acceptable coupling reagents under mild conditions however, the complexes are unstable and not easy to prepare. The method using activated metallic nickel eliminates most of these problems and provides an attractive alternative for carrying out aryl coupling reactions(36,38). [Pg.231]

The Ullmann biaryl synthesis(lQl,102) invokes the reaction of copper powder with aryl halides at relatively high temperatures, typically 100-300 °C, to give biaryl products. The intermediacy of arylcopper species is presumed but not specifically proven due to the instability of the arylcopper at the temperatures required for reaction. The Ullmann reaction has seen appreciable usage as it allows considerable functionality to be incorporated in the products. [Pg.241]

The same group of authors has recently reported a combination of various palladium- and copper-catalyzed Suzuki, cyanation, and Ullmann condensation reactions for the synthesis of thiophene-based selective angiotensin II AT2 receptor antagonists (Scheme 6.24) [55],... [Pg.124]


See other pages where Ullmann copper is mentioned: [Pg.242]    [Pg.103]    [Pg.107]    [Pg.88]    [Pg.495]    [Pg.677]    [Pg.51]    [Pg.56]    [Pg.863]    [Pg.130]    [Pg.49]    [Pg.198]    [Pg.147]    [Pg.165]    [Pg.164]    [Pg.413]    [Pg.241]    [Pg.241]    [Pg.211]    [Pg.221]    [Pg.92]    [Pg.225]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Copper Ullmann coupling

Copper Ullmann reaction

Copper-Catalyzed Ligand Promoted Ullmann-type Coupling Reactions

Copper-catalysed reactions Ullmann couplings

Copper® triflate Ullmann reaction

The Copper-Catalyzed Ullmann Coupling Reaction

Ullmann coupling copper® bromide

Ullmann coupling copper® chloride

Ullmann coupling copper® iodide

© 2024 chempedia.info