Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transporters passive transport

Fig. 2. Schematic representation of relevant electrolyte transport through the renal tubule, depicting the osmolar gradient ia medullary iaterstitial fluid ia ywOj yW where represents active transport, —passive transport, hoth active and passive transport, and passive transport of H2O ia the presence of ADH, ia A, the cortex, and B, the medulla. An osmole equals a mole of solute divided by the number of ions formed per molecule of the solute. Thus one mole of sodium chloride is equivalent to two osmoles, ie, lAfNaCl = 2 Osm NaCl. ADH = antidiuretic hormone. Fig. 2. Schematic representation of relevant electrolyte transport through the renal tubule, depicting the osmolar gradient ia medullary iaterstitial fluid ia ywOj yW where represents active transport, —passive transport, hoth active and passive transport, and passive transport of H2O ia the presence of ADH, ia A, the cortex, and B, the medulla. An osmole equals a mole of solute divided by the number of ions formed per molecule of the solute. Thus one mole of sodium chloride is equivalent to two osmoles, ie, lAfNaCl = 2 Osm NaCl. ADH = antidiuretic hormone.
Major developments in transport kinetics followed from the work of Gardos who, in 1954, succeeded in restoring K+ uptake in red cell ghosts if ATP was added to the medium. Hoffman (1962) showed that in the presence of inosine, the ghosts extruded Na+. Three components of efflux were distinguished active transport, passive transport, and... [Pg.159]

Keywords Colon Controlled release Sustained release Rat Single-pass perfusion Recirculation Closed loop Carrier-mediated transport Passive transport Membrane permeability P-glycoprotein Paracellular pathway Transcellular pathway... [Pg.77]

Sometimes it is useful to apply a combination of the descriptors based on the global properties of the molecule and those based on a pharmacophoric representation. Conceptually, the global properties would better describe the imtial passive membrane permeation required to reach the site of action. Then, the specific protein interactions could be explained by the pharmacophoric descriptors. This has been demonstrated successfully in the P-glycoprotein case [26], where two processes are important for the transport passive transport to the cell and active... [Pg.227]

In contrast to active transport, passive transport as a whole does not involve energy consumption and, therefore, only can work down a concentration gradient (or other types of gradients, such as electrochemical potential, thermal, or pressure gradients). In other words, passive transport of molecules equalizes their chemical potential on both sides of the membrane. The process of passive transport can be subdivided into two different mechanisms passive diffusion and facilitated transport. Passive diffusion is a physico-chemical process, whereas in facilitated transport, molecules pass through the membrane via special channels or are translocated via carrier proteins. Both passive diffusion and facilitated transport, in contrast to active transport, follow a gradient, where facilitation merely lowers the activation energy for the transport process. [Pg.1405]

Compare and contrast the following processes active transport, passive transport, diffusion, and facilitated diffusion. [Pg.374]

Ion Is absorbed by passive transport. Passive transport Is diffusion-controlled and only permits the transit of lipophilic molecules. Substantial evidence shows lipophilic Fe(IIl) complexes traverse biomembranes In the same manner as lipophilic complexes of other metals. Nickel could affect the metabolism of the lipophilic Fe(III) complexes In at least two ways. [Pg.31]

Active transport (1) Movement of molecules or ions across a membrane against a concentration gradient requires expenditure of energy from ATP (2) The transport of a substance across a biological membrane by a mechanism that can work against a concentration (or electrochemical) gradient. It always requires the expenditure of cellular energy. Compare facilitated transport, passive transport. [Pg.1106]

Facilitated transport The movement of a substance across a biological membrane in response to a concentration or electrochemical gradient where the movement is facilitated by membrane pores or by specific transport proteins. Compare active transport, passive transport. [Pg.1134]

From polarization curves the protectiveness of a passive film in a certain environment can be estimated from the passive current density in figure C2.8.4 which reflects the layer s resistance to ion transport tlirough the film, and chemical dissolution of the film. It is clear that a variety of factors can influence ion transport tlirough the film, such as the film s chemical composition, stmcture, number of grain boundaries and the extent of flaws and pores. The protectiveness and stability of passive films has, for instance, been based on percolation arguments [67, 681, stmctural arguments [69], ion/defect mobility [56, 57] and charge distribution [70, 71]. [Pg.2725]

Active Transport. Maintenance of the appropriate concentrations of K" and Na" in the intra- and extracellular fluids involves active transport, ie, a process requiring energy (53). Sodium ion in the extracellular fluid (0.136—0.145 AfNa" ) diffuses passively and continuously into the intracellular fluid (<0.01 M Na" ) and must be removed. This sodium ion is pumped from the intracellular to the extracellular fluid, while K" is pumped from the extracellular (ca 0.004 M K" ) to the intracellular fluid (ca 0.14 M K" ) (53—55). The energy for these processes is provided by hydrolysis of adenosine triphosphate (ATP) and requires the enzyme Na" -K" ATPase, a membrane-bound enzyme which is widely distributed in the body. In some cells, eg, brain and kidney, 60—70 wt % of the ATP is used to maintain the required Na" -K" distribution. [Pg.380]

AletabolicFunctions. The chlorides are essential in the homeostatic processes maintaining fluid volume, osmotic pressure, and acid—base equihbria (11). Most chloride is present in body fluids a Htde is in bone salts. Chloride is the principal anion accompanying Na" in the extracellular fluid. Less than 15 wt % of the CF is associated with K" in the intracellular fluid. Chloride passively and freely diffuses between intra- and extracellular fluids through the cell membrane. If chloride diffuses freely, but most CF remains in the extracellular fluid, it follows that there is some restriction on the diffusion of phosphate. As of this writing (ca 1994), the nature of this restriction has not been conclusively estabUshed. There may be a transport device (60), or cell membranes may not be very permeable to phosphate ions minimising the loss of HPO from intracellular fluid (61). [Pg.380]

In most cases, CVD reactions are activated thermally, but in some cases, notably in exothermic chemical transport reactions, the substrate temperature is held below that of the feed material to obtain deposition. Other means of activation are available (7), eg, deposition at lower substrate temperatures is obtained by electric-discharge plasma activation. In some cases, unique materials are produced by plasma-assisted CVD (PACVD), such as amorphous siHcon from silane where 10—35 mol % hydrogen remains bonded in the soHd deposit. Except for the problem of large amounts of energy consumption in its formation, this material is of interest for thin-film solar cells. Passivating films of Si02 or Si02 Si N deposited by PACVD are of interest in the semiconductor industry (see Semiconductors). [Pg.44]

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

In humans, thiamine is both actively and passively absorbed to a limited level in the intestines, is transported as the free vitamin, is then taken up in actively metabolizing tissues, and is converted to the phosphate esters via ubiquitous thiamine kinases. During thiamine deficiency all tissues stores are readily mobilhed. Because depletion of thiamine levels in erythrocytes parallels that of other tissues, erythrocyte thiamine levels ate used to quantitate severity of the deficiency. As deficiency progresses, thiamine becomes indetectable in the urine, the primary excretory route for this vitamin and its metaboHtes. Six major metaboHtes, of more than 20 total, have been characterized from human urine, including thiamine fragments (7,8), and the corresponding carboxyHc acids (1,37,38). [Pg.88]

Porin channels are impHcated in the transport of cephalosporins because ceds deficient in porins are much more impermeable than are ceds that are rich in porins. The porins appear to function as a molecular sieve, adowing molecules of relatively low molecular weight to gain access to the periplasmic space by passive diffusion. In enterobacteria, a clear correlation exists between porin quantity and cephalosporin resistance, suggesting that the outer membrane is the sole barrier to permeabdity. However, such a relationship is not clearly defined for Pseudomonas aeruginosa where additional barriers may be involved (139,144,146). [Pg.30]

Various types of detector tubes have been devised. The NIOSH standard number S-311 employs a tube filled with 420—840 p.m (20/40 mesh) activated charcoal. A known volume of air is passed through the tube by either a handheld or vacuum pump. Carbon disulfide is used as the desorbing solvent and the solution is then analyzed by gc using a flame-ionization detector (88). Other adsorbents such as siUca gel and desorbents such as acetone have been employed. Passive (diffuse samplers) have also been developed. Passive samplers are useful for determining the time-weighted average (TWA) concentration of benzene vapor (89). Passive dosimeters allow permeation or diffusion-controlled mass transport across a membrane or adsorbent bed, ie, activated charcoal. The activated charcoal is removed, extracted with solvent, and analyzed by gc. Passive dosimeters with instant readout capabiUty have also been devised (85). [Pg.46]

Electrically assisted transdermal dmg deflvery, ie, electrotransport or iontophoresis, involves the three key transport processes of passive diffusion, electromigration, and electro osmosis. In passive diffusion, which plays a relatively small role in the transport of ionic compounds, the permeation rate of a compound is deterrnined by its diffusion coefficient and the concentration gradient. Electromigration is the transport of electrically charged ions in an electrical field, that is, the movement of anions and cations toward the anode and cathode, respectively. Electro osmosis is the volume flow of solvent through an electrically charged membrane or tissue in the presence of an appHed electrical field. As the solvent moves, it carries dissolved solutes. [Pg.145]

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

Fig. 8 shows a primer formulated with a corrosion-inhibiting pigment such as a chromate. As discussed previously, some permeability to moisture is necessary for these pigments to dissolve and be transported to the interface where passivation of the substrate can occur. Optimum performance is generally found at PVC/CPVC Just below 1 [71]. [Pg.457]

A membrane is defined as an intervening phase separating two phases forming an active or passive barrier to the transport of matter. Membrane processes can be operated as (1) Dead-end filtration and (2) Cross-flow filtration. Dead-end filtration refers to filtration at one end. A problem with these systems is frequent membrane clogging. Cross-flow filtration overcomes the problem of membrane clogging and is widely used in water and wastewater treatment. [Pg.335]

Proteins that can flip phospholipids from one side of a bilayer to the other have also been identified in several tissues (Figure 9.11). Called flippases, these proteins reduce the half-time for phospholipid movement across a membrane from 10 days or more to a few minutes or less. Some of these systems may operate passively, with no required input of energy, but passive transport alone cannot establish or maintain asymmetric transverse lipid distributions. However, rapid phospholipid movement from one monolayer to the other occurs in an ATP-dependent manner in erythrocytes. Energy-dependent lipid flippase activity may be responsible for the creation and maintenance of transverse lipid asymmetries. [Pg.268]

From a thermodynamic and kinetic perspective, there are only three types of membrane transport processes passive diffusion, faeilitated diffusion, and active transport. To be thoroughly appreciated, membrane transport phenomena must be considered in terms of thermodynamics. Some of the important kinetic considerations also will be discussed. [Pg.297]

Passive diffusion is the simplest transport process. In passive diffusion, the transported species moves across the membrane in the thermodynamically favored direction without the help of any specific transport system/molecule. For an uncharged molecule, passive diffusion is an entropic process, in which movement of molecules across the membrane proceeds until the concentration of the substance on both sides of the membrane is the same. For an uncharged molecule, the free energy difference between side 1 and side 2 of a membrane (Figure 10.1) is given by... [Pg.297]

In other words, the negative charge is spontaneously attracted to the more positive potential—and AG is negative. In any case, if the sum of the two terms on the right side of Equation 10.2 is a negative number, transport of the ion in question from side 1 to side 2 would occur spontaneously. The driving force for passive transport is the AG term for the transported species itself. [Pg.298]

When cells lie adjacent to each other in animal tissues, they are often connected by gap junction structures, which permit the passive flow of small molecules from one cell to the other. Such junctions essentially connect the cells metabolically, providing a means of chemical transfer and communication. In certain tissues, such as heart muscle that is not innervated, gap junctions permit very large numbers of cells to act synchronously. Gap junctions also provide a means for transport of nutrients to cells disconnected from the circulatory system, such as the lens cells of the eye. [Pg.320]

Does this transport operate by passive diffusion or by facilitated diffusion ... [Pg.325]

The thylakoid membrane is asymmetrically organized, or sided, like the mitochondrial membrane. It also shares the property of being a barrier to the passive diffusion of H ions. Photosynthetic electron transport thus establishes an electrochemical gradient, or proton-motive force, across the thylakoid membrane with the interior, or lumen, side accumulating H ions relative to the stroma of the chloroplast. Like oxidative phosphorylation, the mechanism of photophosphorylation is chemiosmotic. [Pg.727]

The basic mechanism of passivation is easy to understand. When the metal atoms of a fresh metal surface are oxidised (under a suitable driving force) two alternative processes occur. They may enter the solution phase as solvated metal ions, passing across the electrical double layer, or they may remain on the surface to form a new solid phase, the passivating film. The former case is active corrosion, with metal ions passing freely into solution via adsorbed intermediates. In many real corrosion cases, the metal ions, despite dissolving, are in fact not very soluble, or are not transported away from the vicinity of the surface very quickly, and may consequently still... [Pg.126]


See other pages where Transporters passive transport is mentioned: [Pg.3]    [Pg.41]    [Pg.240]    [Pg.291]    [Pg.872]    [Pg.2728]    [Pg.507]    [Pg.381]    [Pg.500]    [Pg.415]    [Pg.533]    [Pg.145]    [Pg.203]    [Pg.203]    [Pg.214]    [Pg.225]    [Pg.41]    [Pg.42]    [Pg.140]    [Pg.475]    [Pg.224]    [Pg.218]    [Pg.408]    [Pg.223]    [Pg.1097]    [Pg.298]    [Pg.298]    [Pg.301]    [Pg.700]    [Pg.28]    [Pg.73]    [Pg.100]    [Pg.122]    [Pg.123]    [Pg.128]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Passive transport

© 2024 chempedia.info