Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport properties, kinetic theories

It follows from this discussion that all of the transport properties can be derived in principle from the simple kinetic dreoty of gases, and their interrelationship tlu ough k and c leads one to expect that they are all characterized by a relatively small temperature coefficient. The simple theory suggests tlrat this should be a dependence on 7 /, but because of intermolecular forces, the experimental results usually indicate a larger temperature dependence even up to for the case of molecular inter-diffusion. The Anhenius equation which would involve an enthalpy of activation does not apply because no activated state is involved in the transport processes. If, however, the temperature dependence of these processes is fitted to such an expression as an algebraic approximation, tlren an activation enthalpy of a few kilojoules is observed. It will thus be found that when tire kinetics of a gas-solid or liquid reaction depends upon the transport properties of the gas phase, the apparent activation entlralpy will be a few kilojoules only (less than 50 kJ). [Pg.112]

The macroscopic properties of a material are related intimately to the interactions between its constituent particles, be they atoms, ions, molecules, or colloids suspended in a solvent. Such relationships are fairly well understood for cases where the particles are present in low concentration and interparticle interactions occur primarily in isolated clusters (pairs, triplets, etc.). For example, the pressure of a low-density vapor can be accurately described by the virial expansion,1 whereas its transport coefficients can be estimated from kinetic theory.2,3 On the other hand, using microscopic information to predict the properties, and in particular the dynamics, of condensed phases such as liquids and solids remains a far more challenging task. In these states... [Pg.125]

For small-scale, high-intensity turbulence, Damkohler reasoned that the transport properties of the flame are altered from laminar kinetic theory viscosity y0 to the turbulent exchange coefficient e so that... [Pg.233]

A series of episodes in the historical development of our view of chemical atoms are presented. Emphasis is placed on the key observations that drove chemists and physicists to conclude that atoms were real objects and to envision their stracture and properties. The kinetic theory of gases and measmements of gas transport yielded good estimates for atomic size. The discovery of the electrorr, proton and neutron strongly irtfluenced discttssion of the constitution of atoms. The observation of a massive, dertse nucleus by alpha particle scattering and the measrrrement of the nuclear charge resrrlted in an enduring model of the nuclear atom. The role of optical spectroscopy in the development of a theory of electronic stracture is presented. The actors in this story were often well rewarded for their efforts to see the atoms. [Pg.90]

Transport properties are often given a short treatment or a treatment too theoretical to be very relevant. The notion that molecules move when driven by some type of concentration gradient is a practical and easily grasped approach. The mathematics can be minimized. Perhaps the most important feature of the kinetic theory of gases is the recognition that macroscopic properties such as pressure and temperature can be derived by suitable averages of the properties of individual molecules. This concept is an important precursor to statistical thermodynamics. Moreover, the notion of a distribution function as a general... [Pg.21]

To apply kinetic theory for the quantitative evaluation of transport properties of low-density gases, one clearly needs the interaction parameters a and e/k. For common substances, these data are readily found in physical-chemistry references. Another good source is the NASA report by Svehla [389], which also provides estimation techniques. For example,... [Pg.78]

A few standard results from the kinetic theory of gases set the stage for calculation of the transport properties. The average distance traveled between collisions (also called the mean-free-path) is given by... [Pg.501]

The previous section gave a simple treatment of transport properties based on the kinetic theory of gases. That approach has the advantages that it is very intuitive and mathematically tractable, and the final results are in approximate agreement with experiment and with more rigorous theory. To go beyond that treatment requires much more complex and specialized theory in statistical mechanics, molecular interactions and collisions [60,178, 269],... [Pg.507]

After in the foregoing chapter thermodynamic properties at high pressure were considered, in this chapter other fundamental problems, namely the influence of pressure on the kinetic of chemical reactions and on transport properties, is discussed. For this purpose first the molecular theory of the reaction rate constant is considered. The key parameter is the activation volume Av which describes the influence of the pressure on the rate constant. The evaluation of Av from measurement of reaction rates is therefor outlined in detail together with theoretical prediction. Typical value of the activation volume of different single reactions, like unimolecular dissociation, Diels-Alder-, rearrangement-, polymerization- and Menshutkin-reactions but also on complex homogeneous and heterogeneous catalytic reactions are presented and discussed. [Pg.65]

Catalyst Formulation Catalyst Synthesis Surface Chemistry Support Effects Anode Kinetics Cathode Kinetics Reaction Mechanism Membrane Synthesis Membrane Transport Properties Theory Modeling... [Pg.42]

When the gas-solid flow in a multiphase system is dominated by the interparticle collisions, the stresses and other dynamic properties of the solid phase can be postulated to be analogous to those of gas molecules. Thus, the kinetic theory of gases is adopted in the modeling of dense gas-solid flows. In this model, it is assumed that collision among particles is the only mechanism for the transport of mass, momentum, and energy of the particles. The energy dissipation due to inelastic collisions is included in the model despite the elastic collision condition dictated by the theory. [Pg.166]

For a dense system of hard, smooth, and elastic spherical particles, a transport theorem based on the analogy of the kinetic theory of dense gases [Reif, 1965] may be derived. Define an ensemble average of any property xjr of a particle as... [Pg.211]

One of the most controversial topics in the recent literature, with regard to partition coefficients in carbonates, has been the effect of precipitation rates on values of the partition coefficients. The fact that partition coefficients can be substantially influenced by crystal growth rates has been well established for years in the chemical literature, and interesting models have been produced to explain experimental observations (e.g., for a simple summary see Ohara and Reid, 1973). The two basic modes of control postulated involve mass transport properties and surface reaction kinetics. Without getting into detailed theory, it is perhaps sufficient to point out that kinetic influences can cause both increases and decreases in partition coefficients. At high rates of precipitation, there is even a chance for the physical process of occlusion of adsorbates to occur. In summary, there is no reason to expect that partition coefficients in calcite should not be precipitation rate dependent. Two major questions are (1) how sensitive to reaction rate are the partition coefficients of interest and (2) will this variation of partition coefficients with rate be of significance to important natural processes Unless the first question is acceptably answered, it will obviously be difficult to deal with the second question. [Pg.92]

William Russel May I follow up on that and sharpen the issue a bit In the complex fluids that we have talked about, three types of nonequilibrium phenomena are important. First, phase transitions may have dynamics on the time scale of the process, as mentioned by Matt Tirrell. Second, a fluid may be at equilibrium at rest but is displaced from equilibrium by flow, which is the origin of non-Newtonian behavior in polymeric and colloidal fluids. And third, the resting state itself may be far from equilibrium, as for a glass or a gel. At present, computer simulations can address all three, but only partially. Statistical mechanical or kinetic theories have something to say about the first two, but the dynamics and the structure and transport properties of the nonequilibrium states remain poorly understood, except for the polymeric fluids. [Pg.198]

There is a close connection between molecular mass, momentum, and energy transport, which can be explained in terms of a molecular theory for low-density monatomic gases. Equations of continuity, motion, and energy can all be derived from the Boltzmann equation, producing expressions for the flows and transport properties. Similar kinetic theories are also available for polyatomic gases, monatomic liquids, and polymeric liquids. In this chapter, we briefly summarize nonequilibrium systems, the kinetic theory, transport phenomena, and chemical reactions. [Pg.53]

We shall consider in detail the predictions of the hard-sphere model for the viscosity, thermal conductivity, and diffusion of gases indeed, the kinetic theory treatment of these three transport properties is very similar. But first let us consider the simpler problem of molecular effusion. [Pg.120]


See other pages where Transport properties, kinetic theories is mentioned: [Pg.664]    [Pg.664]    [Pg.260]    [Pg.700]    [Pg.229]    [Pg.174]    [Pg.288]    [Pg.179]    [Pg.6]    [Pg.487]    [Pg.488]    [Pg.500]    [Pg.501]    [Pg.503]    [Pg.505]    [Pg.507]    [Pg.669]    [Pg.180]    [Pg.292]    [Pg.903]    [Pg.254]    [Pg.165]    [Pg.170]    [Pg.35]    [Pg.97]    [Pg.615]    [Pg.229]    [Pg.37]    [Pg.1]    [Pg.706]    [Pg.460]   


SEARCH



Kinetic theory 492 kinetics

Kinetics theory

Property kinetics

Transport kinetics

Transport properties

Transport properties, kinetic

Transport theory

Transportation theories

Transporters kinetics

Transporters properties

© 2024 chempedia.info