Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport concepts, applications

Penetrant Concentration-Plasticization Polymer Molecular Structure Relaxation-Controlled Transport Applications of Transport Concepts Barrier Materials Devolatilization Additive Migration Dyeing... [Pg.253]

One of the most usefiil applications of the mean free path concept occurs in the theory of transport processes in systems where there exist gradients of average but local density, local temperature, and/or local velocity. The existence of such gradients causes a transfer of particles, energy or momentum, respectively, from one region of the system to another. [Pg.671]

For the Berry phase, we shall quote a definition given in [164] ""The phase that can be acquired by a state moving adiabatically (slowly) around a closed path in the parameter space of the system. There is a further, somewhat more general phase, that appears in any cyclic motion, not necessarily slow in the Hilbert space, which is the Aharonov-Anandan phase [10]. Other developments and applications are abundant. An interim summai was published in 1990 [78]. A further, more up-to-date summary, especially on progress in experimental developments, is much needed. (In Section IV we list some publications that report on the experimental determinations of the Berry phase.) Regarding theoretical advances, we note (in a somewhat subjective and selective mode) some clarifications regarding parallel transport, e.g., [165], This paper discusses the projective Hilbert space and its metric (the Fubini-Study metric). The projective Hilbert space arises from the Hilbert space of the electronic manifold by the removal of the overall phase and is therefore a central geometrical concept in any treatment of the component phases, such as this chapter. [Pg.105]

This chapter focuses on types of models used to describe the functioning of biogeochemical cycles, i.e., reservoir or box models. Certain fundamental concepts are introduced and some examples are given of applications to biogeochemical cycles. Further examples can be found in the chapters devoted to the various cycles. The chapter also contains a brief discussion of the nature and mathematical description of exchange and transport processes that occur in the oceans and in the atmosphere. This chapter assumes familiarity with the definitions and basic concepts listed in Section 1.5 of the introduction such as reservoir, flux, cycle, etc. [Pg.62]

Compartmental soil modeling is a new concept and can apply to both modules. For the solute fate module, for example, it consists of the application of the law of pollutant mass conservation to a representative user specified soil element. The mass conservation principle is applied over a specific time step, either to the entire soil matrix or to the subelements of the matrix such as the soil-solids, the soil-moisture and the soil-air. These phases can be assumed in equilibrium at all times thus once the concentration in one phase is known, the concentration in the other phases can be calculated. Single or multiple soil compartments can be considered whereas phases and subcompartments can be interrelated (Figure 2) with transport, transformation and interactive equations. [Pg.53]

Although mass transfer across the water-air interface is difficult in terms of its application in a sewer system, it is important to understand the concept theoretically. The resistance to the transport of mass is mainly expected to reside in the thin water and gas layers located at the interface, i.e., the two films where the gradients are indicated (Figure 4.3). The resistance to the mass transfer in the interface itself is assumed to be negligible. From a theoretical point of view, equilibrium conditions exist at the interface. Because of this conceptual understanding of the transport across the air-water boundary, the theory for the mass transport is often referred to as the two-film theory (Lewis and Whitman, 1924). [Pg.74]

The first step in the application of the concept was to determine the critical load values for the different regions of eastern Canada. This was done using historical measurements of lake acidity in concert with the Integrated Assessment Model (IAM) which links atmospheric transport and deposition models with water chemistry and empirical biological response models. Details of the method are given in Jeffries and Lam (1993). [Pg.340]

Schade, W. (2005). Strategic Sustainability Analysis Concept and Application for the Assessment of European Transport Policy. Baden-Baden Nomos Verlag. [Pg.562]

In the application of the principle of microscopic reversibility we have to be careful. We cannot apply this concept to overall reactions. Even Eqs. (4.43) - (4.45) cannot be applied unless we know that other reaction steps (e.g., diffusional transport) are not rate controlling. In a given chemical system there are many elementary reactions going on simultaneously. Rate constants are path-dependent (which is not the case for equilibrium constants)and may be changed by catalysts. For equilibrium to be reached, all elementary processes must have equal forward and reverse rates... [Pg.126]


See other pages where Transport concepts, applications is mentioned: [Pg.80]    [Pg.267]    [Pg.80]    [Pg.365]    [Pg.646]    [Pg.609]    [Pg.759]    [Pg.1815]    [Pg.1262]    [Pg.179]    [Pg.197]    [Pg.552]    [Pg.299]    [Pg.199]    [Pg.239]    [Pg.191]    [Pg.198]    [Pg.425]    [Pg.458]    [Pg.406]    [Pg.421]    [Pg.336]    [Pg.239]    [Pg.700]    [Pg.229]    [Pg.301]    [Pg.125]    [Pg.179]    [Pg.333]    [Pg.155]    [Pg.300]    [Pg.162]    [Pg.116]    [Pg.209]    [Pg.381]    [Pg.562]    [Pg.78]    [Pg.583]    [Pg.621]    [Pg.394]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Application transportation

© 2024 chempedia.info