Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transitions chemical reactions

When heat is produced in the sample after the photolytic flash, the refractive index of the liquid changes and the probe beam is deflected. The intensity of this probe beam measured by a photomultiplier tube placed behind the pinhole decreases as the temperature of the irradiated volume increases (then its density and its refractive index decrease). The total optical signal change is a measurement of all the heat produced in the sample, i.e. the sum of non-radiative transitions, chemical reactions and solvation energies. Luminescence does not contribute to this signal (nor does scattered light) and for this reason thermal lensing can be used to determine luminescence quantum yields. [Pg.252]

Group theory is also used prior to calculations to determine whether a quantum-mechanical integral of the type /i j, op. % dt is different from zero or not. This is important in such areas as selection rules for electronic transitions, chemical reactions, infrared and Raman spectroscopy, and other spectroscopies. [Pg.214]

Dynamic mechanical tests have been widely applied in the viscoelastic analysis of polymers and other materials. The reason for this has been the technical simplicity of the method and the low tensions and deformations used. The response of materials to dynamic perturbation fields provides information concerning the moduli and the compliances for storage and loss. Dynamic properties are of considerable interest when they are analyzed as a function of both frequency and temperature. They permit the evaluation of the energy dissipated per cycle and also provide information concerning the structure of the material, phase transitions, chemical reactions, and other technical properties, such as fatigue or the resistance to impact. Of particular relevance are the applications in the field of the isolation of vibrations in mechanical engineering. The dynamic measurements are a... [Pg.273]

Manneville-Pomeau Intermittent transition Chemical reaction Benard experiment... [Pg.226]

Ultrasonic spectroscopy allows measuring a wide variety of liquid systems, from dilute to concentrated solutions, and can be used to monitor processes such as molecular structural changes, thermal transitions, chemical reactions, aggregation formation, crystallisation, etc. Attenuation measurements are used for particle sizing in emulsions and suspensions and for kinetics of fast chemical reactions. [Pg.128]

The dynamic behavior of polymer chains at interfaces is poorly understood. Most significant experiments on the molecular scale were performed on DNA molecules using fluorescence miaoscopy. However, the applicability of optical techniques is limited due to low spatial resolution. In this respect, AFM is an appropriate technique that can potentially provide real-space and real-time information about translational, rotational, and bending motions of molecules on the nanometer length scales. Currently, AFM makes first steps in monitoring of molecular processes, such as diffusion, conformational transitions, chemical reactions, and self-assembly. [Pg.570]

It should be emphasized that isomerization is by no means the only process involving chemical reactions in which spectroscopy plays a key role as an experimental probe. A very exciting topic of recent interest is the observation and computation [73, 74] of the spectral properties of the transition state [6]—catching a molecule in the act as it passes the point of no return from reactants to products. Furthennore, it has been discovered from spectroscopic observation [75] that molecules can have motions that are stable for long times even above the barrier to reaction. [Pg.74]

Consider how the change of a system from a thennodynamic state a to a thennodynamic state (3 could decrease the temperature. (The change in state a —> f3 could be a chemical reaction, a phase transition, or just a change of volume, pressure, magnetic field, etc). Initially assume that a and (3 are always in complete internal equilibrium, i.e. neither has been cooled so rapidly that any disorder is frozen in. Then the Nemst heat... [Pg.371]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

The above discussion represents a necessarily brief simnnary of the aspects of chemical reaction dynamics. The theoretical focus of tliis field is concerned with the development of accurate potential energy surfaces and the calculation of scattering dynamics on these surfaces. Experimentally, much effort has been devoted to developing complementary asymptotic techniques for product characterization and frequency- and time-resolved teclmiques to study transition-state spectroscopy and dynamics. It is instructive to see what can be accomplished with all of these capabilities. Of all the benclunark reactions mentioned in section A3.7.2. the reaction F + H2 —> HE + H represents the best example of how theory and experiment can converge to yield a fairly complete picture of the dynamics of a chemical reaction. Thus, the remainder of this chapter focuses on this reaction as a case study in reaction dynamics. [Pg.875]

Keck J 1960 Variational theory of chemical reaction rates applied to three-body recombinations J. Chem. Phys. 32 1035 Anderson J B 1973 Statistical theories of chemical reactions. Distributions in the transition region J. Chem. Phys. 58 4684... [Pg.896]

Song K and Chesnavich W J 1989 Multiple transition states in chemical reactions variational transition state theory studies of the HO2 and HeH2 systems J. Chem. Rhys. 91 4664-78... [Pg.1039]

Dantus M, Rosker M J and Zewail A H 1987 Real-time femtosecond probing of transition states in chemical reactions J. Chem. Phys. 87 2395-7... [Pg.1995]

Optical metiiods, in both bulb and beam expermrents, have been employed to detemiine tlie relative populations of individual internal quantum states of products of chemical reactions. Most connnonly, such methods employ a transition to an excited electronic, rather than vibrational, level of tlie molecule. Molecular electronic transitions occur in the visible and ultraviolet, and detection of emission in these spectral regions can be accomplished much more sensitively than in the infrared, where vibrational transitions occur. In addition to their use in the study of collisional reaction dynamics, laser spectroscopic methods have been widely applied for the measurement of temperature and species concentrations in many different kinds of reaction media, including combustion media [31] and atmospheric chemistry [32]. [Pg.2071]

Baer M 1985 The theory of electronic non-adiabatic transitions in chemical reactions Theory of Chemical Reaction Dynamics vol II, ed M Baer (Boca Raton, FL CRC Press) p 281... [Pg.2323]

The reactivity of size-selected transition-metal cluster ions has been studied witli various types of mass spectrometric teclmiques [1 ]. Fourier-transfonn ion cyclotron resonance (FT-ICR) is a particularly powerful teclmique in which a cluster ion can be stored and cooled before experimentation. Thus, multiple reaction steps can be followed in FT-ICR, in addition to its high sensitivity and mass resolution. Many chemical reaction studies of transition-metal clusters witli simple reactants and hydrocarbons have been carried out using FT-ICR [49, 58]. [Pg.2394]

One of the motivations for studying Van der Waals complexes and clusters is that they are floppy systems with similarities to the transition states of chemical reactions. This can be taken one stage further by studying clusters that actually are precursors for chemical reactions, and can be broken up to make more than one set of products. A good example of this is H2-OH, which can in principle dissociate to fonn either H2 + OH or H2O + H. Indeed, dissociation to H2 O -t H is energetically favoured the reaction H2 + OH—> H2 O -t H is exothennic by about 5000... [Pg.2451]

Transient, or time-resolved, techniques measure tire response of a substance after a rapid perturbation. A swift kick can be provided by any means tliat suddenly moves tire system away from equilibrium—a change in reactant concentration, for instance, or tire photodissociation of a chemical bond. Kinetic properties such as rate constants and amplitudes of chemical reactions or transfonnations of physical state taking place in a material are tlien detennined by measuring tire time course of relaxation to some, possibly new, equilibrium state. Detennining how tire kinetic rate constants vary witli temperature can further yield infonnation about tire tliennodynamic properties (activation entlialpies and entropies) of transition states, tire exceedingly ephemeral species tliat he between reactants, intennediates and products in a chemical reaction. [Pg.2946]

In this chapter, we discussed the significance of the GP effect in chemical reactions, that is, the influence of the upper electronic state(s) on the reactive and nonreactive transition probabilities of the ground adiabatic state. In order to include this effect, the ordinary BO equations are extended either by using a HLH phase or by deriving them from first principles. Considering the HLH phase due to the presence of a conical intersection between the ground and the first excited state, the general fomi of the vector potential, hence the effective... [Pg.79]

Electronic transitions fexcitations or deexcitations) can take place during the course of a chemical reaction and have important consequences for its dynamics. The motion of electrons and nuclei were first analyzed in a quantum mechanical framework by Bom and Oppenheimer [1], who separated the... [Pg.179]

Many trail situtii states of chemical reactions contain syniinetry elemen ts not present in the reactan ts and products. For example, 111 the 11 m brella in version of amm on ia, a plane of sym metry exists only in the transition state. [Pg.133]


See other pages where Transitions chemical reactions is mentioned: [Pg.487]    [Pg.351]    [Pg.9]    [Pg.437]    [Pg.146]    [Pg.382]    [Pg.170]    [Pg.487]    [Pg.351]    [Pg.9]    [Pg.437]    [Pg.146]    [Pg.382]    [Pg.170]    [Pg.47]    [Pg.402]    [Pg.601]    [Pg.31]    [Pg.778]    [Pg.781]    [Pg.883]    [Pg.1069]    [Pg.1591]    [Pg.1751]    [Pg.2059]    [Pg.2115]    [Pg.2333]    [Pg.2798]    [Pg.3033]    [Pg.107]    [Pg.177]    [Pg.434]    [Pg.568]   
See also in sourсe #XX -- [ Pg.125 , Pg.127 , Pg.127 ]




SEARCH



Chemical reaction dynamics transition regularity

Chemical reaction dynamics transition state theory

Chemical reaction dynamics unify” transition state theory

Chemical reaction rates, collision transition probability

Chemical reactions transition state theory

Chemical reactions transition states

Chemical transition

Transition State Species and Chemical Reactions

Transition probability chemical reaction rates

Transition state organic chemical reaction frontier

Transition state theory of chemical reactions

© 2024 chempedia.info