Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perturbation dynamics

Gutowsky H S and Holm C H 1975 Time-dependent magnetic perturbations Dynamic Nuclear Magnetic Resonance Spectroscopy ed L M Jackman and F A Cotton (New York Academic) pp 1-21... [Pg.2146]

Figure 11.16 The perturbed dynamics of the dimensionless temperature variable y (t). Solid and dashed lines correspond to the low and high doses, respectively. Figure 11.16 The perturbed dynamics of the dimensionless temperature variable y (t). Solid and dashed lines correspond to the low and high doses, respectively.
Analytic response theory, which represents a particular formulation of time-dependent perturbation theory, has constituted a core technology in much of the this development. Response functions provide a universal representation of the response of a system to perturbations, and are applicable to all computational models, density-functional as well as wave-function models, and to all kinds of perturbations, dynamic as well as static, internal as well as external perturbations. The analytical character of the theory with properties evaluated from analytically derived expressions at finite frequencies, makes it applicable for a large range of experimental conditions. The theory is also model transferable in that, once the computational model has been defined, all properties are obtained on an equal footing, without further approximations. [Pg.152]

Under the spectral assumptions of section 3.2.3, theorem 1, it is now possible to reduce the perturbed dynamics to a three-dimensional center manifold which is modeled over the group SE 2) itself. In Palais coordinates... [Pg.86]

Finally, reference is made to the dynamic dichroic absorption difference, which is related to an absorption change induced by an external time-dependent perturbation. Dynamic absorption spectroscopy is performed with linearly polarized IR light and serves for example to detect intermolecular hydrogen bonds in polyamides of the structure... [Pg.101]

More informative and precision instruments are devices based on the dynamic methods of indentation. The impedance of a vibrating probe perturbing the medium is related to the... [Pg.239]

The linear response of a system is detemiined by the lowest order effect of a perturbation on a dynamical system. Fomially, this effect can be computed either classically or quantum mechanically in essentially the same way. The connection is made by converting quantum mechanical conmuitators into classical Poisson brackets, or vice versa. Suppose tliat the system is described by Hamiltonian where denotes an... [Pg.708]

Many groups are now trying to fit frequency shift curves in order to understand the imaging mechanism, calculate the minimum tip-sample separation and obtain some chemical sensitivity (quantitative infonuation on the tip-sample interaction). The most conunon methods appear to be perturbation theory for considering the lever dynamics [103], and quantum mechanical simulations to characterize the tip-surface interactions [104]. Results indicate that the... [Pg.1697]

Excitable media are some of tire most commonly observed reaction-diffusion systems in nature. An excitable system possesses a stable fixed point which responds to perturbations in a characteristic way small perturbations return quickly to tire fixed point, while larger perturbations tliat exceed a certain tlireshold value make a long excursion in concentration phase space before tire system returns to tire stable state. In many physical systems tliis behaviour is captured by tire dynamics of two concentration fields, a fast activator variable u witli cubic nullcline and a slow inhibitor variable u witli linear nullcline [31]. The FitzHugh-Nagumo equation [34], derived as a simple model for nerve impulse propagation but which can also apply to a chemical reaction scheme [35], is one of tire best known equations witli such activator-inlribitor kinetics ... [Pg.3064]

If the diffusion coefficient of species A is less tlian tliat of B (D < D ) tlie propagating front will be planar. However, if is sufficiently greater than tire planar front will become unstable to transverse perturbations and chaotic front motion will ensue. To understand tire origin of tire mechanism of tire planar front destabilization consider tire following suppose tire interface is slightly non-planar. We would like to know if tire dynamics will tend to eliminate this non-planarity or accentuate it. LetZ)g The situation is depicted schematically in figure... [Pg.3070]

Many experimental techniques now provide details of dynamical events on short timescales. Time-dependent theory, such as END, offer the capabilities to obtain information about the details of the transition from initial-to-final states in reactive processes. The assumptions of time-dependent perturbation theory coupled with Fermi s Golden Rule, namely, that there are well-defined (unperturbed) initial and final states and that these are occupied for times, which are long compared to the transition time, no longer necessarily apply. Therefore, truly dynamical methods become very appealing and the results from such theoretical methods can be shown as movies or time lapse photography. [Pg.236]

Importantly for direct dynamics calculations, analytic gradients for MCSCF methods [124-126] are available in many standard quantum chemistiy packages. This is a big advantage as numerical gradients require many evaluations of the wave function. The evaluation of the non-Hellmann-Feynman forces is the major effort, and requires the solution of what are termed the coupled-perturbed MCSCF (CP-MCSCF) equations. The large memory requirements of these equations can be bypassed if a direct method is used [233]. Modem computer architectures and codes then make the evaluation of first and second derivatives relatively straightforward in this theoretical framework. [Pg.301]

In this section, the spin-orbit interaction is treated in the Breit-Pauli [13,24—26] approximation and incoi porated into the Hamiltonian using quasidegenerate perturbation theory [27]. This approach, which is described in [8], is commonly used in nuclear dynamics and is adequate for molecules containing only atoms with atomic numbers no larger than that of Kr. [Pg.464]

Bash, P.A., Field, M.J.,Karplus, M. Free energy perturbation method for chemical reactions in the condensed phase A dynamical approach baaed on a combined quantum and molecular dynamics potential. J. Am. Chem. Soc. 109 (1987) 8092-8094. [Pg.29]

S. Miyamoto and P. A. Kollman. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins, 16 226-245, 1993. [Pg.96]

Such a free energy is called a potential of mean force. Average values of Fs can be computed in dynamics simulations (which sample a Boltzmann distribution), and the integral can be estimated from a series of calculations at several values of s. A third method computes the free energy for perturbing the system by a finite step in s, for example, from si to S2, with... [Pg.134]

A likely exit path for the xenon was identified as follows. Different members of our research group placed the exit path in the same location and were able to control extraction of the xenon atom with the tug feature of the steered dynamics system without causing exaggerated perturbations of the structure. The exit path is located between the side chains of leucines 84 and 118 and of valine 87 the flexible side chain of lysine 83 lies just outside the exit and part of the time is an obstacle to a linear extraction (Fig. 1). [Pg.142]

Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient. Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient.

See other pages where Perturbation dynamics is mentioned: [Pg.147]    [Pg.10]    [Pg.353]    [Pg.147]    [Pg.88]    [Pg.37]    [Pg.380]    [Pg.308]    [Pg.416]    [Pg.627]    [Pg.147]    [Pg.10]    [Pg.353]    [Pg.147]    [Pg.88]    [Pg.37]    [Pg.380]    [Pg.308]    [Pg.416]    [Pg.627]    [Pg.244]    [Pg.245]    [Pg.266]    [Pg.514]    [Pg.721]    [Pg.884]    [Pg.893]    [Pg.1283]    [Pg.2949]    [Pg.99]    [Pg.181]    [Pg.253]    [Pg.452]    [Pg.767]    [Pg.59]    [Pg.108]    [Pg.129]    [Pg.153]   
See also in sourсe #XX -- [ Pg.732 ]




SEARCH



Collision dynamics time-dependent perturbation

Dynamic perturbation, description

Molecular dynamics free-energy perturbation

Molecular dynamics simulation free energy perturbation

Perturbation response, anomalous diffusion dynamics

Perturbation theory system quantum dynamics

Perturbed flame dynamics

Perturbed flame dynamics acoustics

Perturbed flame dynamics instabilities

Perturbed flame dynamics perturbations

Statistical mechanical perturbation theory dynamics

© 2024 chempedia.info