Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals overview

We have not attempted to cover all or even most aspects of crown chemistry and some may say that the inclusions are eclectic. We felt that anyone approaching the field would need an appreciation for the jargon currently abounding and for the so-called template effect since the latter has a considerable bearing on the synthetic methodology. We have, therefore, included brief discussions of these topics in the first two chapters. In chapters 3—8, we have tried to present an overview of the macrocyclic polyethers which have been prepared. We have taken a decidedly organic tack in this attempting to be comprehensive in our inclusion of alkali and alkaline earth cation binders rather than the compounds of use in transition metal chemistry. Nevertheless, many of the latter are included in concert with their overall importance. [Pg.417]

Very recently, Olivier-Bourbigou and Magna [15], Sheldon [16], and Gordon [17] have published three excellent reviews presenting a comprehensive overview of current work in transition metal catalysis involving ionic liquids, with slightly different emphases. All three update previously published reviews on the same topic, by Wasserscheid and Keim [18], Welton [19] and Seddon and Holbrey [20]. [Pg.216]

Abstract A literature overview, up to the end of 2004, of the most important microwave-assisted transition-metal-mediated processes used for the decoration and construction of heterocycles is presented. The emphasis of the chapter lies in the use of palladium-assisted reactions but examples of copper- and nickel-mediated processes are also incorporated. [Pg.155]

Abstract An overview on the microwave-enhanced synthesis and decoration of the 2(lH)-pyrazinone system is presented. Scaffold decoration using microwave-enhanced transition-metal-catalyzed reactions for generating structural diversity, as well as the conversion of the 2(lH)-pyrazinone skeleton applying Diels-Alder reactions to generate novel heterocyclic moieties are discussed. The transfer of the solution phase to polymer-supported chemistry (SPOS) is also described in detail. [Pg.267]

The previous sections have described methods to obtain 2-pyridone scaffolds. Both in the construction of new materials and especially in drug design and development, there is a desire to be able to derivatize and optimize the lead structures. In the following sections, some recent developments using MAOS to effectively substitute and derivatize 2-pyridone heterocycles are described. The reaction types described range from electrophilic-, and nucleophilic reactions to transition metal-catalyzed transformations (Fig. 7). To get an overview of how these systems behave, their characteristics imder conventional heating is first described in brevity. [Pg.323]

In many respects, this is the kernel of this book. For years it has not been too clear how one could consistently account for the wide variety of transition-metal chemistry in a way that does not conflict with the equally varied phenomena of spectroscopy and magnetochemistry that are so well rationalized by ligand-field theory. There is a tendency - psychologically quite natural, no doubt - for those interested in synthetic and mainstream chemistry not to look too closely at theory and physical properties, and, of course, vice versa. However, there has always been the need, surely, to build a logical synthesis of, or bridge between, these two aspects of the same subject. We hope that our presentation in this book goes some way towards providing that overview. [Pg.128]

In this chapter, we survey the diversity of transition metals, beginning with an overview. Then we describe the stmcture and bonding in transition metal complexes. We describe metallurgy, the processes by which pure metals are extracted from mineral ores. The chapter ends with a presentation of some properties of transition metals and their biological roles. [Pg.1429]

We may thus conclude after this short overview on DeNO technologies that NH3-SCR using catalysts based on V-W-oxides supported on titania is a well-established technique for stationary sources of power plants and incinerators, while for other relevant sources of NO, such as nitric acid tail gases, where emissions are characterized from a lower temperature and the presence of large amounts of NOz, alternative catalysts based on transition metal containing microporous materials are possible. Also, for the combined DeNO -deSO, alternative catalysts would be necessary, because they should operate in the presence of large amounts of SO,.. Similarly, there is a need to develop new/improved catalysts for the elimination of NO in FCC emissions, again due to the different characteristics of the feed with respect to emissions from power plants. [Pg.6]

Although much of the chemistry of transition metals is associated with coordination compounds, there are some important aspects of their behavior that are related to other types of compounds. In this section, a brief overview of the chemistry of transition metals will be given with emphasis on the first-row metals. [Pg.379]

Coordination compounds have been produced by a variety of techniques for at least two centuries. Zeise s salt, K[Pt(C2H4)Cl3], dates from the early 1800s, and Werner s classic syntheses of cobalt complexes were described over a century ago. Synthetic techniques used to prepare coordination compounds range from simply mixing the reactants to employing nonaqueous solvent chemistry. In this section, a brief overview of some types of general synthetic procedures will be presented. In Chapter 21, a survey of the organometallic chemistry of transition metals will be presented, and additional preparative methods for complexes of that type will be described there. [Pg.695]

For an overview see the recent special issue Computational Transition Metal Chemistry. Chem. Rev. 2000, 100, 351-818. [Pg.223]

Why are transition metals so well suited for catalysis A complete treatment of this critical question lies well beyond the scope of this book, but we can focus on selected aspects of bond activation and reactivity for dihydrogen and alkene bonds as important special cases. Before discussing specific examples that involve formal metal acidity or hypovalency, it is convenient to sketch a more general localized donor-acceptor overview of catalytic interactions in transition-metal complexes involving dihydrogen49 (this section) and alkenes (Section 4.7.4). [Pg.488]

The intermolecular carbometallation reaction catalyzed by transition metals from groups 8 to 11 has been fully investigated during the last decade. Many examples have been reported in the literature concerning different metals in order to create C-C bonds. Overview of this powerful method will be given as exhaustively as possible and carbometallation reactions will be classified according to unsaturated systems. [Pg.300]

In this chapter I will cover only well-defined or well-characterized compounds. Results will be included that have appeared since reviews in 1991 on alkylidene and metalacyclobutane complexes [41] and in 1993 on ring-opening metathesis polymerization [30], but an overview of prior results that are especially relevant to olefin metathesis in particular will also be included. (An excellent and comprehensive text also has been published recently [1].) The terms well-defined or well-characterized originally were meant to imply that the alkylidene complex is isolable and is essentially identical to that in a catalytic reaction except for the identity of the alkylidene. These terms have been watered down from time to time in the literature, even to the point where they are used to describe a catalyst that is formed from a well-characterized transition metal precursor complex, but whose identity actually is not known. In this article I... [Pg.13]

This chapter will provide an overview of the development and use of early transition-metal complexes in hydrogenation, and in consequence has been divided into several sections. Section 6.2 will focus on the mechanistic differences in the hydrogenation reaction between early and late transition metals. The following three sections will describe the various systems based on Group IV (Sec-... [Pg.113]

Table 20.7 A short overview of the reduction of acetophenone with MPVO catalysts and transition metal catalysts developed during the past five years. [Pg.616]

This overview covers some of the rules for naming simple inorganic compounds. There are additional rules, and some exceptions to these rules. The first part of this overview discusses the rules for deriving a name from a chemical formula. In many cases, the formula may be determined from the name by reversing this process. The second part examines situations in which additional information is needed to generate a formula from the name of a compound. The transition metals present some additional problems therefore, there is a section covering transition metal nomenclature and coordination compounds. [Pg.53]


See other pages where Transition metals overview is mentioned: [Pg.170]    [Pg.432]    [Pg.157]    [Pg.184]    [Pg.4]    [Pg.79]    [Pg.246]    [Pg.18]    [Pg.1429]    [Pg.1489]    [Pg.288]    [Pg.34]    [Pg.153]    [Pg.173]    [Pg.125]    [Pg.535]    [Pg.184]    [Pg.473]    [Pg.39]    [Pg.2]    [Pg.95]    [Pg.286]    [Pg.650]    [Pg.726]    [Pg.790]    [Pg.204]    [Pg.1444]    [Pg.288]    [Pg.563]    [Pg.417]   
See also in sourсe #XX -- [ Pg.413 , Pg.414 , Pg.415 , Pg.416 , Pg.417 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.423 ]




SEARCH



Metallic overview

Metals overview

Transition metal catalysts overview

Transition metal complexes method overview

Transition metal complexes overview

Transition overview

Transition-metal catalysis overview

Transits overview

© 2024 chempedia.info