Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemistry polymer-supported

The polymer-supported catalysts are thus important conceptually in linking catalysis in solutions and catalysis on supports. The acid—base chemistry is fundamentally the same whether the catalytic groups are present in a solution or anchored to the support. The polymer-supported catalysts have replaced acid solutions in numerous processes because they minimise the corrosion, separation, and disposal problems posed by mineral acids. [Pg.175]

B. Clapham, T.S. Reger and K.D. Janda, Polymer-supported Catalysis in Synthetic Organic Chemistry, Tetrahedron 57 4637-4662 2007. [Pg.78]

Sherringron, D. C. (1991). Polymer Supported Systems Towards Clean Chemistry Chemistry and Industry (7 January), 15-19. [Pg.144]

These conceptual goals are attained by several combinatorial methods and tools. Characteristic for combinatorial chemistry is the synthesis on solid support or by polymer-supported synthesis, allowing for much higher efficiency in library production. Synthesis can be conducted either in automated parallel synthesis or by split-and-recombine synthesis. Centerpieces of combinatorial methods further include specific analytical methods for combinatorial... [Pg.381]

Under certain condition, however, reactions are still preferably conducted in solution. This is the case e.g., for heterogeneous reactions and for conversions, which deliver complex product mixtures. In the latter case, further conversion of this mixture on the solid support is not desirable. In these instances, the combination of solution chemistry with polymer-assisted conversions can be an advantageous solution. Polymer-assisted synthesis in solution employs the polymer matrix either as a scavenger or for polymeric reagents. In both cases the virtues of solution phase and solid supported chemistry are ideally combined allowing for the preparation of pure products by filtration of the reactive resin. If several reactive polymers are used sequentially, multi-step syntheses can be conducted in a polymer-supported manner in solution as well. As a further advantage, many reactive polymers can be recycled for multiple use. [Pg.382]

If novel chemistry polymer overlays or all-polymer programs are used to improve boiler cleanliness, technical support services should... [Pg.455]

Polymer-supported reactions are a relatively recent development in synthetic organic chemistry. In an ideal case a reagent is prepared as part of a polymer which is then poured onto a column. The reactant is then passed through the column in a suitable solvent and the product is obtained free of both starting material and other reagents and is simply isolated by evaporation of the solvent. Ideally the polymer should be easily recyclable. [Pg.985]

Abstract Current microwave-assisted protocols for reaction on solid-phase and soluble supports are critically reviewed. The compatibility of commercially available polymer supports with the relatively harsh conditions of microwave heating and the possibilities for reaction monitoring are discussed. Instrmnentation available for microwave-assisted solid-phase chemistry is presented. This review also summarizes the recent applications of controlled microwave heating to sohd-phase and SPOT-chemistry, as well as to synthesis on soluble polymers, fluorous phases and functional ionic liquid supports. The presented examples indicate that the combination of microwave dielectric heating with solid- or soluble-polymer supported chemistry techniques provides significant enhancements both at the level of reaction rate and ease of purification compared to conventional procedures. [Pg.80]

By replacing insoluble cross-linked resins with soluble polymer supports, the well-estabhshed reaction conditions of classical organic chemistry can be more readily apphed, while still fadhtating product purification. However, soluble supports suffer from the hmitation of low loading capacity. The recently introduced fluorous synthesis methodology overcomes many of the drawbacks of both the insoluble beads and the soluble polymers, but the high cost of perfluoroalkane solvents, hmitation in solvent selection, and the need for specialized reagents may hmit its apphcations. [Pg.116]

Abstract An overview on the microwave-enhanced synthesis and decoration of the 2(lH)-pyrazinone system is presented. Scaffold decoration using microwave-enhanced transition-metal-catalyzed reactions for generating structural diversity, as well as the conversion of the 2(lH)-pyrazinone skeleton applying Diels-Alder reactions to generate novel heterocyclic moieties are discussed. The transfer of the solution phase to polymer-supported chemistry (SPOS) is also described in detail. [Pg.267]

This review has shown that the analogy between P=C and C=C bonds can indeed be extended to polymer chemistry. Two of the most common uses for C=C bonds in polymer science have successfully been applied to P=C bonds. In particular, the addition polymerization of phosphaalkenes affords functional poly(methylenephosphine)s the first examples of macromolecules with alternating phosphorus and carbon atoms. The chemical functionality of the phosphine center may lead to applications in areas such as polymer-supported catalysis. In addition, the first n-conjugated phosphorus analogs of poly(p-phenylenevinylene) have been prepared. Comparison of the electronic properties of the polymers with molecular model compounds is consistent with some degree of n-conjugation in the polymer backbone. [Pg.124]

Dipeptides and longer peptides are typically synthesized by solid-phase chemistry at polymer beads, a route discovered by and named after Merrifield [5, 88]. Disadvantages of this approach are that the polymer support is expensive and additional steps for linkage to and cleavage from the polymer are required. Hence solution chemistries are an alternative to the Merrifield approach. [Pg.434]

Many examples of such benzylic instability are provided by classical (free-molecule) organic chemistry, as well as a few by the smaller and more specialized field of polymer-supported reagents and catalysts. Hence ... [Pg.25]

Kobayashi, S. Combinatorial Library Synthesis Using Polymer-supported Catalysts. In Combinatorial Chemistry, Fenniri, H., Ed., Oxford University Press Oxford, U.K., 2000 pp 421-432. [Pg.547]

In 2001, Sarko and coworkers disclosed the synthesis of an 800-membered solution-phase library of substituted prolines based on multicomponent chemistry (Scheme 6.187) [349]. The process involved microwave irradiation of an a-amino ester with 1.1 equivalents of an aldehyde in 1,2-dichloroethane or N,N-dimethyl-formamide at 180 °C for 2 min. After cooling, 0.8 equivalents of a maleimide dipo-larophile was added to the solution of the imine, and the mixture was subjected to microwave irradiation at 180 °C for a further 5 min. This produced the desired products in good yields and purities, as determined by HPLC, after scavenging excess aldehyde with polymer-supported sulfonylhydrazide resin. Analysis of each compound by LC-MS verified its purity and identity, thus indicating that a high quality library had been produced. [Pg.227]

Varma and Kappe have developed a method that enables the rapid and parallel synthesis of DHPM 58 (Scheme 8.22) but does not rely on polymer-supported building blocks and therefore does not require the development of solid-phase linkingcleaving chemistry. They showed that polyphosphate ester (PPE) serves as an excel-... [Pg.264]

One of the cornerstones of combinatorial synthesis has been the development of solid-phase organic synthesis (SPOS) based on the original Merrifield method for peptide preparation [19]. Because transformations on insoluble polymer supports should enable chemical reactions to be driven to completion and enable simple product purification by filtration, combinatorial chemistry has been primarily performed by SPOS [19-23], Nonetheless, solid-phase synthesis has several shortcomings, because of the nature of heterogeneous reaction conditions. Nonlinear kinetic behavior, slow reaction, solvation problems, and degradation of the polymer support, because of the long reactions, are some of the problems typically experienced in SPOS. It is, therefore, not surprising that the first applications of microwave-assisted solid-phase synthesis were reported as early 1992 [24],... [Pg.407]


See other pages where Chemistry polymer-supported is mentioned: [Pg.129]    [Pg.129]    [Pg.545]    [Pg.129]    [Pg.129]    [Pg.129]    [Pg.545]    [Pg.129]    [Pg.72]    [Pg.57]    [Pg.12]    [Pg.131]    [Pg.132]    [Pg.132]    [Pg.133]    [Pg.135]    [Pg.148]    [Pg.292]    [Pg.308]    [Pg.309]    [Pg.629]    [Pg.222]    [Pg.143]    [Pg.22]    [Pg.71]    [Pg.25]    [Pg.95]    [Pg.226]    [Pg.292]    [Pg.327]    [Pg.337]    [Pg.363]    [Pg.420]    [Pg.406]    [Pg.414]    [Pg.415]   
See also in sourсe #XX -- [ Pg.237 , Pg.237 ]




SEARCH



Chemistry support

Polymer chemistry

Polymer-supported Stille chemistry

Polymer-supported chemistry (SPOS

© 2024 chempedia.info