Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals, defined

Prussian blue is made by mixing together aqueous solutions of FeCl3 and K4pe(CN)6, which contains [FefCN) ] - ions, a State the oxidation states of the iron ions in each of these solutions, b Describe the shape of the [Fe(CN)g] ion. c Iron is a transition metal. Define the term transition metal. [Pg.488]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

Complex carbides are very numerous. Many newer compounds of this class have been discovered and their stmctures elucidated (20). The octahedron M C is typical where the metals arrange around a central carbon atom. The octahedra may be coimected via corners, edges, or faces. Trigonal prismatic polyhedra also occur. Defining T as transition metal and M as metal or main group nonmetal, the complex carbides can be classified as (/)... [Pg.455]

Meta/ Oxides. The metal oxides aie defined as oxides of the metals occurring in Groups 3—12 (IIIB to IIB) of the Periodic Table. These oxides, characterized by high electron mobiUty and the positive oxidation state of the metal, ate generally less active as catalysts than are the supported nobel metals, but the oxides are somewhat more resistant to poisoning. The most active single-metal oxide catalysts for complete oxidation of a variety of oxidation reactions are usually found to be the oxides of the first-tow transition metals, V, Cr, Mn, Fe, Co, Ni, and Cu. [Pg.503]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

Lower oxidation states are rather sparsely represented for Zr and Hf. Even for Ti they are readily oxidized to +4 but they are undoubtedly well defined and, whatever arguments may be advanced against applying the description to Sc, there is no doubt that Ti is a transition metal . In aqueous solution Ti can be prepared by reduction of Ti, either with Zn and dilute acid or electrolytically, and it exists in dilute acids as the violet, octahedral [Ti(H20)6] + ion (p. 970). Although this is subject to a certain amount of hydrolysis, normal salts such as halides and sulfates can be separated. Zr and are known mainly as the trihalides or their derivatives and have no aqueous chemistry since they reduce water. Table 21.2 (p. 960) gives the oxidation states and stereochemistries found in the complexes of Ti, Zr and Hf along with illustrative examples. (See also pp. 1281-2.)... [Pg.958]

In the light of these results, it becomes important to question whether a particular catalytic result obtained in a transition metal-catalyzed reaction in an imidazolium ionic liquid is caused by a metal carbene complex formed in situ. The following simple experiments can help to verify this in more detail a) variation of ligands in the catalytic system, b) application of independently prepared, defined metal carbene complexes, and c) investigation of the reaction in pyridinium-based ionic liquids. If the reaction shows significant sensitivity to the use of different ligands, if the application of the independently prepared, defined metal-carbene complex... [Pg.224]

In comparison with traditional biphasic catalysis using water, fluorous phases, or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way to combine the specific advantages of homogeneous and heterogeneous catalysis. In many applications, the use of a defined transition metal complex immobilized on a ionic liquid support has already shown its unique potential. Many more successful examples - mainly in fine chemical synthesis - can be expected in the future as our loiowledge of ionic liquids and their interactions with transition metal complexes increases. [Pg.253]

One of the most important parameters that defines the structure and stability of inorganic crystals is their stoichiometry - the quantitative relationship between the anions and the cations [134]. Oxygen and fluorine ions, O2 and F, have very similar ionic radii of 1.36 and 1.33 A, respectively. The steric similarity enables isomorphic substitution of oxygen and fluorine ions in the anionic sub-lattice as well as the combination of complex fluoride, oxyfluoride and some oxide compounds in the same system. On the other hand, tantalum or niobium, which are the central atoms in the fluoride and oxyfluoride complexes, have identical ionic radii equal to 0.66 A. Several other cations of transition metals are also sterically similar or even identical to tantalum and niobium, which allows for certain isomorphic substitutions in the cation sublattice. [Pg.59]

At the present time the concept of catalytic (or ionic-coordination ) polymerization has been developed by investigating polymerization processes in the presence of transition metal compounds. The catalytic polymerization may be defined as a process in which the catalyst takes part in the formation of the transition complexes of elementary acts during the propagation reaction. [Pg.173]

The past fifteen years have seen evidence of great interest in homogeneous catalysis, particularly by transition metal complexes in solution predictions were made that many heterogeneous processes would be replaced by more efficient homogeneous ones. There are two motives in these changes—first, intellectual curiosity and the belief that we can define the active center with... [Pg.230]

Although olefin metathesis had soon after its discovery attracted considerable interest in industrial chemistry, polymer chemistry and, due to the fact that transition metal carbene species are involved, organometallic chemistry, the reaction was hardly used in organic synthesis for many years. This situation changed when the first structurally defined and stable carbene complexes with high activity in olefin metathesis reactions were described in the late 1980s and early 1990s. A selection of precatalysts discovered in this period and representative applications are summarized in Table 1. [Pg.226]

Figure 4.27 presents steady-state potentiostatic r vs 0Na results during NO reduction by H2 on Pt/p"-Al203f2 PInb values well in excess of 4000 are obtained for 0Na values below 0.002. This is due to the tremendous propensity of Na to induce NO dissociation on transition metal surfaces. Since Plj is often found to be strongly dependent on 0, (Figs. 4.26 and 4.27), it is also useful to define a differential promotion index pij from ... [Pg.149]

Field Stabilization Energies, or LFSE s. The variation in LFSE across the transition-metal series is shown graphically in Fig. 8-6. It is no accident, of course, that the plots intercept the abscissa for d, d and ions, for that is how the LFSE is defined. Ions with all other d configurations are more stable than the d, d or d ions, at least so far as this one aspect is concerned. For the high-spin cases, we note a characteristic double-hump trace and note that we expect particular stability conferred upon d and d octahedral ions. For the low-spin series, we observe a particularly stable arrangement for ions. More will be said about these systems in the next chapter. [Pg.151]

Thus far, we have focused exclusively upon the block metals. For some, the term transition elements defines just these J-block species for others, it includes the rare earth or lanthanoid elements, sometimes called the inner transition elements . In this chapter, we compare the elements with respect to their valence shells. In doing so, we shall underscore concepts which we have already detailed as well as identifying both differences and similarities between certain aspects of main and inner transition-metal chemistry. We make no attempt to review lanthanoid chemistry at large. Instead our point of departure is the most characteristic feature of lanthanoid chemistry the +3 oxidation state. [Pg.197]

The D and E positions have 15 B near neighbors. The E position can be occupied by transition metals. The D hole is occupied except in the Si solution. The center of the D hole is poorly defined. Within this hole, Cu or Ge atoms are distributed on two separate positions, situated 40 pm and 80 pm apart, respectively. [Pg.256]

The compressibility of group-IVA and -VIA transition-metal boride powders is measured by the dimensions and weights of the blanks, by measuring the stroke of the punches with a cathetometer, or alternatively by electrical conductivity (based upon the metallic conductivity of most borides). The process of densiheation by pressing is defined by ... [Pg.298]


See other pages where Transition metals, defined is mentioned: [Pg.257]    [Pg.257]    [Pg.13]    [Pg.565]    [Pg.342]    [Pg.228]    [Pg.412]    [Pg.168]    [Pg.217]    [Pg.153]    [Pg.327]    [Pg.906]    [Pg.1236]    [Pg.13]    [Pg.253]    [Pg.187]    [Pg.128]    [Pg.353]    [Pg.132]    [Pg.275]    [Pg.433]    [Pg.446]    [Pg.461]    [Pg.472]    [Pg.24]    [Pg.12]    [Pg.79]    [Pg.117]    [Pg.119]    [Pg.105]    [Pg.139]    [Pg.159]    [Pg.48]   
See also in sourсe #XX -- [ Pg.54 , Pg.75 ]

See also in sourсe #XX -- [ Pg.46 , Pg.418 ]




SEARCH



I 5 Well-Defined Transition Metal Catalysts for Metathesis Polymerization

Ring well-defined transition metal-based

Transition, defined

© 2024 chempedia.info