Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titration advantages

These are crystalline compounds with sharp melting points, and possess the further advantage that their equivalent weights may be determined by dissolving in dilute alcohol and titrating with standard alkali. Nitro-phenols, however, give unsatisfactory derivatives. [Pg.683]

When polymers or other water-soluble substances are present in the sample, it is advantageous to add a small amount of chloroform to the initial reaction mixture after the subsequent addition of water, a two-phase system results which may be titrated in the usual way to a starch end point or by observing the disappearance of the iodine colour in the chloroform layer. [Pg.808]

Titrations may be automated using a pump to deliver the titrant at a constant flow rate, and a solenoid valve to control the flow (Figure 9.5). The volume of titrant delivered is determined by multiplying the flow rate by the elapsed time. Automated titrations offer the additional advantage of using a microcomputer for data storage and analysis. [Pg.278]

Although not commonly used, thermometric titrations have one distinct advantage over methods based on the direct or indirect monitoring of plT. As discussed earlier, visual indicators and potentiometric titration curves are limited by the magnitude of the relevant equilibrium constants. For example, the titration of boric acid, ITaBOa, for which is 5.8 X 10 °, yields a poorly defined equivalence point (Figure 9.15a). The enthalpy of neutralization for boric acid with NaOlT, however, is only 23% less than that for a strong acid (-42.7 kj/mol... [Pg.294]

Analysis for Poly(Ethylene Oxide). Another special analytical method takes advantage of the fact that poly(ethylene oxide) forms a water-insoluble association compound with poly(acryhc acid). This reaction can be used in the analysis of the concentration of poly(ethylene oxide) in a dilute aqueous solution. Ereshly prepared poly(acryhc acid) is added to a solution of unknown poly(ethylene oxide) concentration. A precipitate forms, and its concentration can be measured turbidimetricaHy. Using appropriate caUbration standards, the precipitate concentration can then be converted to concentration of poly(ethylene oxide). The optimum resin concentration in the unknown sample is 0.2—0.4 ppm. Therefore, it is necessary to dilute more concentrated solutions to this range before analysis (97). Low concentrations of poly(ethylene oxide) in water may also be determined by viscometry (98) or by complexation with KI and then titration with Na2S202 (99). [Pg.343]

The method of evaluation of the rate constants for this reaction scheme will depend upon the type of analytical information available. This depends in part upon the nature of the reaction, but it also depends upon the contemporary state of analytical chemistry. Up to the middle of the 20th century, titrimetry was a widely applied means of studying reaction kinetics. Titrimetric analysis is not highly sensitive, nor is it very selective, but it is accurate and has the considerable advantage of providing absolute concentrations. When used to study the A —> B — C system in which the same substance is either produced or consumed in each step (e.g., the hydrolysis of a diamide or a diester), titration results yield a quantity F = Cb + 2cc- Swain devised a technique, called the time-ratio method, to evaluate the rate... [Pg.69]

It is sometimes advantageous to employ a burette with an extended jet which is bent twice at right angles so that the tip of the jet is displaced by some 7.5-10 cm from the body of the burette. Insertion of the tip of the burette into complicated assemblies of apparatus is thus faci itated, and there is a further advantage, that if heated solutions have to be titrated the body of the burette is kept away from the source of heat. Burettes fitted with two-way stopcocks are useful for attachment to reservoirs of stock solutions. [Pg.84]

The Bronsted-Lowry theory of acids and bases referred to in Section 10.7 can be applied equally well to reactions occurring during acid-base titrations in non-aqueous solvents. This is because their approach considers an acid as any substance which will tend to donate a proton, and a base as a substance which will accept a proton. Substances which give poor end points due to being weak acids or bases in aqueous solution will frequently give far more satisfactory end points when titrations are carried out in non-aqueous media. An additional advantage is that many substances which are insoluble in water are sufficiently soluble in organic solvents to permit their titration in these non-aqueous media. [Pg.281]

Glycerol has been widely employed for this purpose but mannitol and sorbitol are more effective, and have the advantage that being solids they do not materially increase the volume of the solution being titrated 0.5-0.7 g of mannitol or sorbitol in 10 mL of solution is a convenient quantity. [Pg.300]

The main advantages over the ammonium molybdophosphate method are (1) quinoline molybdophosphate is less soluble and has a constant composition, and (2) quinoline is a sufficiently weak base not to interfere in the titration. [Pg.304]

Calmagite. This indicator, l-(l-hydroxyl-4-methyl-2-phenylazo)-2-naphthol-4-sulphonic acid, has the same colour change as solochrome black, but the colour change is somewhat clearer and sharper. An important advantage is that aqueous solutions of the indicator are stable almost indefinitely. It may be substituted for solochrome black without change in the experimental procedures for the titration of calcium plus magnesium (see Sections 10.54 and 10.62). Calmagite functions as an acid-base indicator ... [Pg.318]

For the titration of chlorides, fluorescein may be used. This indicator is a very weak acid (Ka = ca lx 10-8) hence even a small amount of other acids reduces the already minute ionisation, thus rendering the detection of the end point (which depends essentially upon the adsorption of the free anion) either impossible or difficult to observe. The optimum pH range is between 7 and 10. Dichlorofluorescein is a stronger acid and may be utilised in slightly acid solutions of pH greater than 4.4 this indicator has the further advantage that it is applicable in more dilute solutions. [Pg.347]

For the titration of colourless or slightly coloured solutions, the use of an indicator is unnecessary, since as little as 0.01 mL of 0.02 M potassium permanganate imparts a pale-pink colour to 100 mL of water. The intensity of the colour in dilute solutions may be enhanced, if desired, by the addition of a redox indicator (such as sodium diphenylamine sulphonate, AT-phenylanthranilic acid, or ferroin) just before the end point of the reaction this is usually not required, but is advantageous if more dilute solutions of permanganate are used. [Pg.369]

Full details are given for the determination of aluminium by this method. Many other metals may be determined by this same procedure, but in many cases complexometric titration offers a simpler method of determination. In cases where the oxine method offers advantages, the experimental procedure may be readily adapted from the details given for aluminium. [Pg.407]

Conductimetric measurements can also be used to ascertain the end-point in many titrations, but such use is limited to comparatively simple systems in which there are no excessive amounts of reagents present. Thus, many oxidation titrations which require the presence of relatively large amounts of acid are not suited to conductimetric titration. Conductimetric titrations have been largely superseded by potentiometric procedures (see Chapter 15), but there are occasions when the conductimetric method can be advantageous.14... [Pg.521]

Weak acids with weak bases. The titration of a weak acid and a weak base can be readily carried out, and frequently it is preferable to employ this procedure rather than use a strong base. Curve (c) in Fig. 13.2 is the titration curve of 0.003 M acetic acid with 0.0973 M aqueous ammonia solution. The neutralisation curve up to the equivalence point is similar to that obtained with sodium hydroxide solution, since both sodium and ammonium acetates are strong electrolytes after the equivalence point an excess of aqueous ammonia solution has little effect upon the conductance, as its dissociation is depressed by the ammonium salt present in the solution. The advantages over the use of strong alkali are that the end point is easier to detect, and in dilute solution the influence of carbon dioxide may be neglected. [Pg.526]

The most important advantage of the equivalent system is that the calculations of titrimetric analysis are rendered very simple, since at the end point the number of equivalents of the substance titrated is equal to the number of equivalents of the standard solution employed. We may write ... [Pg.845]

The most reliable method is probably the potentiometric titration procedure first reported by Dilley [101]. This procedure has the added advantage of avoiding the use of trichloromethane. The procedure for the manufacture of the membrane-indicating electrode has been modified and a simplified description is given below. Commercial variants are also becoming available. [Pg.432]

Besides the above-mentioned titration methods, some special instrumentical analytical ones were established in recent years. A big advantage lies in the fact that single components can be detected even in complex mixtures by using chromatographic methods. Gas chromatography fails to analyze nonvolatile surfactant molecules. To get volatile components, chemical manipulations have to be... [Pg.515]

Lippi et. al (87) and Dirstine (88) circumvented titration by converting the liberated fatty acids into copper salts, which after extraction in chloroform are reacted with diethyldithio-carbamate to form a colored complex which is measured photometrically. While the end point appears to be more sensitive than the pH end point determination, the advantages are outweighed by the additional steps of solvent extraction, centrifugation and incomplete extraction when low concentrations of copper salts are present. Other substrates used for the measurement of lipase activity have been tributyrin ( ), phenyl laurate (90), p-nit ro-pheny1-stearate and 3-naphthyl laurate (91). It has been shown that these substrates are hydrolyzed by esterases and thus lack specificity for lipase. Studies on patients with pancreatitis indicate olive oil emulsion is definitely superior to water soluble esters as substrates for measuring serum lipase activity. [Pg.213]

Some studies have evaluated the feasibility, safety, and efficacy of combined IV rt-PA at a dose of 0.6 mg/kg with lAT in patients presenting with acute strokes within 3 hours of symptom onset. This approach has the potential of combining the advantages of IV rt-PA (fast and easy to use) with the advantages of lAT (directed therapy, titrated dosing, mechanical aids to recanalization, and higher rates of recanalization), thus improving the speed and frequency of recanalization. [Pg.68]

Hypertonic sahne is actively excluded from an intact BBB and also acts to draw water into the intravascular space by the creation of a sodium gradient. Various concentrations have been evaluated, with continuous sodium chloride infusions ranging from 3% to 9%, and bolus infusions up to 23.4% administered over 20 minutes in a 30 mL solution. When a continuous infusion is used, the serum sodium is typically titrated to the 155-160 range. Sodium levels above this range raise the concern for seizures and other toxic side effects. Hypertonic saline may hold an advantage over mannitol, as it has been found in animal models to decrease edema in both... [Pg.174]


See other pages where Titration advantages is mentioned: [Pg.182]    [Pg.496]    [Pg.501]    [Pg.1166]    [Pg.284]    [Pg.331]    [Pg.504]    [Pg.395]    [Pg.395]    [Pg.444]    [Pg.114]    [Pg.83]    [Pg.260]    [Pg.350]    [Pg.375]    [Pg.523]    [Pg.544]    [Pg.573]    [Pg.578]    [Pg.626]    [Pg.628]    [Pg.629]    [Pg.722]    [Pg.856]    [Pg.860]    [Pg.24]    [Pg.144]    [Pg.59]   
See also in sourсe #XX -- [ Pg.3763 , Pg.3764 ]




SEARCH



Advantages of potentiometric titration

Conductometric titrations advantage

Coulometric titrations advantage

Photometric titrations advantages

© 2024 chempedia.info