Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium tetraisopropoxide catalyst

The SAE is arguably one of the most important reactions discovered in the last 30 years. The SAE converts the double bond of allyl alcohols into epoxides with high enantioselective purity using a titanium tetraisopropoxide catalyst, Ti(0-iPr)4, chiral additive, either L-(+)-diethyl tartrate [(+)-DET, 7.45] or D-(—)-diethyl tartrate [(—)-DET, 7.46], and tert-butyl peroxide (t-BuOOH, TBHP (f-butylhydroperoxide)) as the source of the oxidant in stoichiometric amounts (see section 1.5, references 28-30 of Chapter 1). [Pg.292]

Poly( 1,3-propylene 2,6-naphthalate) (3GN) is synthesized from dimethyl-2,6-naphthalene dicarboxylate and 1,3-propanediol. The ingredients are reacted under atmospheric pressure under nitrogen in the presence of Ty-zorTM titanium tetraisopropoxide catalyst. The vessel is heated to 240°C over a period of about 330 min. At 188°C, methanol started to evolve. [Pg.367]

Yamamoto et al. have reported a chiral helical titanium catalyst, 10, prepared from a binaphthol-derived chiral tetraol and titanium tetraisopropoxide with azeotropic removal of 2-propanol [16] (Scheme 1.22, 1.23, Table 1.9). This is one of the few catalysts which promote the Diels-Alder reaction of a-unsubstituted aldehydes such as acrolein with high enantioselectivity. Acrolein reacts not only with cyclo-pentadiene but also 1,3-cyclohexadiene and l-methoxy-l,3-cyclohexadiene to afford cycloadducts in 96, 81, and 98% ee, respectively. Another noteworthy feature of the titanium catalyst 10 is that the enantioselectivity is not greatly influenced by reaction temperature (96% ee at... [Pg.18]

Another chiral titanium reagent, 11, was developed by Corey et al. [17] (Scheme 1.24). The catalyst was prepared from chiral ris-N-sulfonyl-2-amino-l-indanol and titanium tetraisopropoxide with removal of 2-propanol, followed by treatment with one equivalent of SiCl4, to give the catalytically-active yellow solid. This catalyst is thought not to be a simple monomer, but rather an aggregated species, as suggested by NMR study. Catalyst 11 promotes the Diels-Alder reaction of a-bro-moacrolein with cyclopentadiene or isoprene. [Pg.18]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

The preparation method of titania support was described in the previous paper [6]. Titanium tetraisopropoxide (TTIP 97%, Aldrich) was used as a precursor of titania. Supported V0x/Ti02 catalysts were prepared by two different methods. The precipitation-deposition catalysts (P-V0x/Ti02) were prepared following the method described by Van Dillen et al. [7], in which the thermal decomposition of urea was used to raise homogeneously the pH of a... [Pg.225]

The 4 A Molecular Sieves System. The initial procedure for the Sharpless reaction required a stoichiometric amount of the tartrate Ti complex promoter. In the presence of 4 A molecular sieves, the asymmetric reaction can be achieved with a catalytic amount of titanium tetraisopropoxide and DET (Table 4-2).15 This can be explained by the fact that the molecular sieves may remove the co-existing water in the reaction system and thus avoid catalyst deactivation. Similar results may be observed in kinetic resolution (Table 4-3).15... [Pg.202]

Engler and colleagues256 demonstrated that the way in which catalyst 406 is prepared has a strong effect on the regioselectivity and enantioselectivity of quinone Diels-Alder reactions. The most effective catalyst was prepared from a 1 1 1 mixture of titanium tetrachloride, titanium tetraisopropoxide and chiral diol 416. The cycloadditions of 2-methoxy-l,4-benzoquinones such as 414 with simple dienes to give adducts like 415 proceeded with high yields and enantioselectivities of up to 80% ee using this catalytic system (equation 123). [Pg.425]

Monochlorotitanium complex 418, prepared from (l/J,25 )-Af-(2,4,6-trimethylbenze-nesulfonyl)-2-amino-l-indanol and titanium tetraisopropoxide followed by treatment with titanium tetrachloride effectively catalyzed the cycloaddition of a-bromoacrolein to cyclo-pentadiene, affording 366 with 93% ee (equation 125)259. Catalyst 418 induced an ee of 90% in the reaction of isoprene with a-bromoacrolein. [Pg.425]

Yamamoto and colleagues prepared chiral titanium catalyst 420 from titanium tetraisopropoxide and chiral binaphthol 419 (equation 126). This catalyst gave high asymmetric inductions in various Diels-Alder reactions of a,/J-unsaturated aldehydes with cyclopen-tadiene and 1,3-cyclohexadiene260. [Pg.425]

Full details on this ring opening46 under titanium tetraisopropoxide or aluminium triisopropoxide catalysis have been published. Using chirally modified titanium catalysts, cyclohexene oxide provides47 fraws-2-azidocyclohexanol in up to 63% ee. [Pg.1672]

Hie first of Sharpless s reactions is an oxidation of alkenes by asymmetric epoxidation. You met vanadium as a transition-metal catalyst for epoxidation with r-butyl hydroperoxide in Chapter 33, and this new reaction makes use of titanium, as titanium tetraisopropoxide, Ti(OiPr)4, to do the same thing. Sharpless surmised that, by adding a chiral ligand to the titanium catalyst, he might be able to make the reaction asymmetric. The ligand that works best is diethyl tartrate, and the reaction shown below is just one of many that demonstrate that this is a remarkably good reaction. [Pg.1239]

Selected results employing 0.05 mol% loading of each ligand and titanium tetraisopropoxide are illustrated in Table 2. It is noteworthy that the enantioselectivities obtained with the L5/L6/Ti combination are 0.1-20% higher than the L5/L5/Ti combination. These results indicate that the most enantioselective catalyst contains both ligands. [Pg.276]

Chiral titanates can be employed as catalysts for the alkylation of aldehydes using dialkylzinc reagents. For example, by the use of a catalytic amount of the chiral titanium reagent (4), addition of Diethylzinc to various aldehydes occurs with high enantios-electivity in the presence of Titanium Tetraisopropoxide (eq 4)7... [Pg.246]

Additions to Aldehydes. Alkylation of aromatic and aliphatic aldehydes with a combination of titanium tetraisopropoxide, Ti(0-/-Pr)4, and diethy Izinc, ZnEt2, in the presence of a catalytic amount of the bis-sulfonamide la leads to formation of (S)-l-phenyl-1-propanol 4 with high enantioselectivity (eq 2, Table 1). Use of the (R,7 )-l,2-(trifluoromethanesulfonamido)-cyclohexane lb [CAS 122833-60-7] allows for an equally selective reaction, but at exceptionally low catalyst loadings. In the case of aromatic aldehydes, these reactions are fairly rapid, requiring at most 2 hours to reach full conversion. [Pg.395]

Enantiomerically pure carboxylic acids are routinely obtained from N-acylsultams by Hydrogen Peroxide assisted saponification with Lithium Hydroxide in aqueous THF. 4 Alternatively, transesterification can be effected under neutral conditions in allyl alcohol containing Titanium Tetraisopropoxide, giving the corresponding allyl esters which can be isomerized/hydrolyzed with Wilkinson s catalyst (Chlorotris(triphenylphosphine)rhodium(I)) in Et0H-H20. This provides a convenient route to carboxylic acids containing base-sensitive functionality. Primary alcohols are obtained by treatment with L-Selectride (Lithium Tri-s-butylborohydride) in THF at ambient temperature. ... [Pg.439]

Second generation Phillips catalysts involve use of titanium compounds that modify the surface chemistry of the support and enables production of polyethylene with higher MI (lower MW) (12). Titanium tetraisopropoxide, also known as tetraisopropyl titanate (TIPT), is the most commonly used modifier for these catalysts. Hexavalent chromium titanate species are probably formed on the surface as shown in Figure 5.3 (13). Catalyst surfaces contain a diversity of active sites and molecular weight distribution of the polymer is broader than that from generation catalysts. [Pg.65]


See other pages where Titanium tetraisopropoxide catalyst is mentioned: [Pg.248]    [Pg.735]    [Pg.237]    [Pg.243]    [Pg.284]    [Pg.300]    [Pg.559]    [Pg.828]    [Pg.270]    [Pg.5]    [Pg.113]    [Pg.3]    [Pg.18]    [Pg.275]    [Pg.275]    [Pg.735]    [Pg.95]    [Pg.72]    [Pg.1242]    [Pg.735]    [Pg.1242]    [Pg.219]   
See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Catalysts titanium

Tetraisopropoxides

Titanium tetraisopropoxide

© 2019 chempedia.info