Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids enantiomerically pure

The synthesis of key intermediate 12, in optically active form, commences with the resolution of racemic trans-2,3-epoxybutyric acid (27), a substance readily obtained by epoxidation of crotonic acid (26) (see Scheme 5). Treatment of racemic 27 with enantio-merically pure (S)-(-)-1 -a-napthylethylamine affords a 1 1 mixture of diastereomeric ammonium salts which can be resolved by recrystallization from absolute ethanol. Acidification of the resolved diastereomeric ammonium salts with methanesulfonic acid and extraction furnishes both epoxy acid enantiomers in eantiomerically pure form. Because the optical rotation and absolute configuration of one of the antipodes was known, the identity of enantiomerically pure epoxy acid, (+)-27, with the absolute configuration required for a synthesis of erythronolide B, could be confirmed. Sequential treatment of (+)-27 with ethyl chloroformate, excess sodium boro-hydride, and 2-methoxypropene with a trace of phosphorous oxychloride affords protected intermediate 28 in an overall yield of 76%. The action of ethyl chloroformate on carboxylic acid (+)-27 affords a mixed carbonic anhydride which is subsequently reduced by sodium borohydride to a primary alcohol. Protection of the primary hydroxyl group in the form of a mixed ketal is achieved easily with 2-methoxypropene and a catalytic amount of phosphorous oxychloride. [Pg.176]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

Results of nucleophilic addition reactions to various a-oxo 4,5-dihydrooxazoles are summarized in Table 24. In general, the diastereoselectivity of these reactions is low to moderate, although an increased selectivity is found in the presence of triethylamine or N,N,N, N -te-tramethylethylenediamine, which slow down the rate of reaction. Nevertheless, enantiomerical-ly pure 2-hydroxy carboxylic acids can be prepared by this method, since the diastereomeric addition products are separable either by recrystallization or HPLC21. [Pg.104]

A similar case of enolatc-controlled stereochemistry is found in aldol additions of the chiral acetate 2-hydroxy-2.2-triphenylethyl acetate (HYTRA) when both enantiomers of double deprotonated (R)- and (S)-HYTRA are combined with an enantiomerically pure aldehyde, e.g., (7 )-3-benzyloxybutanal. As in the case of achiral aldehydes, the deprotonated (tf)-HYTRA also attacks (independent of the chirality of the substrate) mainly from the /te-side to give predominantly the t/nii-carboxylic acid after hydrolysis. On the other hand, the (S)-reagcnt attacks the (/ )-aldebyde preferably from the. S7-side to give. s wz-carboxylic acids with comparable selectivity 6... [Pg.574]

In Ugi four-component reactions (for mechanism, see Section 1.4.4.1.) all four components may potentially serve as the stereodifferentiating tool65. However, neither the isocyanide component nor the carboxylic acid have pronounced effects on the overall stereodiscrimination60 66. As a consequence, the factors influencing the stereochemical course of Ugi reactions arc similar to those in Strecker syntheses. The use of chiral aldehydes is commonly found in substrate-controlled syntheses whereas the asymmetric synthesis of new enantiomerically pure compounds via Ugi s method is restricted to the application of optically active amines as the chiral auxiliary group. [Pg.795]

Enantiopure (R)- and (S)-nipecotic acid (Nip) derivatives 64 were obtained following classical resolution of ethyl nipecotate with either enantiomer of tartaric acid and successive recrystallization of the corresponding salts [153, 154, 156] or by resolution of racemic nipecotic acid with enantiomerically pure camphorsul-fonic acid [154]. N-Boc protected pyrrolidine-3-carboxylic acid (PCA) 65 for the synthesis of homo-ohgomers [155] was prepared by GeUman from trans-4-hydroxy-L-prohne according to a known procedure [157]. [Pg.49]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]

Groger, H. (2001) Enzymatic routes to enantiomerically pure aromatic a-hydroxy carboxylic acids a further example for the diversity of biocatalysis. Advanced Synthesis and Catalysis, 343, 547-558. [Pg.193]

Acylsultam Systems. Oppolzer et al.53 developed a general route to enantiomerically pure crystalline a,a-disubstituted carboxylic acid derivatives by asymmetric alkylation of A -acylsul tarns. Acylsultam 50 can be readily prepared from the inexpensive chiral auxiliary sultam 53.5 4... [Pg.93]

Kolbe electrolysis of trilfuoromethylated carboxylic acids has been shown to be a versatile method for providing useful building blocks having a CF3 group. Seebach and Renaud have prepared new types of trifluoromethylated chiral building blocks from enantiomerically pure 3-hydroxy-4,4,4-trifluorobutyric acid (Scheme 7.6) [76]. [Pg.44]

The hexahydro-l//-pyrrolo[2,l-f][l,4]oxazin-l-one 82 (obtained by radical cyclization see Section 11.11.7.3) was transformed into the proline derivative 83 by hydrogenation in the presence of the Pearlman s catalyst and a stoichiometric amount of trifluoroacetic acid (TFA) (Scheme 10). This reaction led with high yield to the disub-stituted proline 83 in an enantiomerically pure form <2003SL1058>. In an analogous approach, the chiral (4/ ,7/ ,8aA)-methyl 6,6-dimethyl-l-oxo-4-phenylhexahydro-l//-pyrrolo[2,l-r-][l,4]oxazine-7-carboxylate 84 was hydrogenated on Pd(OH)2 in the presence of TFA to give enantiomerically pure 5,5-dimethylproline derivatives 85 <2001SL1836> (Scheme 10). [Pg.508]

A second example of the use of ionic chiral auxiliaries for asymmetric synthesis is found in the work of Chong et al. on the cis.trans photoisomerization of certain cyclopropane derivatives [33]. Based on the report by Zimmerman and Flechtner [34] that achiral tmns,trans-2,3-diphenyl-l-benzoylcyclopropane (35a, Scheme 7) undergoes very efficient (0=0.94) photoisomerization in solution to afford the racemic cis,trans isomer 36a, the correspondingp-carboxylic acid 35b was synthesized and treated with a variety of optically pure amines to give salts of general structure 35c (CA=chiral auxiliary). Irradiation of crystals of these salts followed by diazomethane workup yielded methyl ester 36d, which was analyzed by chiral HPLC for enantiomeric excess. The results are summarized in Table 3. [Pg.15]

Since the enantiomers of the carboxylic acid 42-H can easily be separated via its diastereomeric salts (Scheme 10) [59], many of the other bicyclopropylidene derivatives can also be obtained in enantiomerically pure form by transformations of the acids (R)- and (S)-42-H. The absolute configuration of (i )-42-H was proved by an X-ray crystal structure analysis of its (f )-a-phenylethylamide [59]. [Pg.100]

Starting from the Michael adducts of (4R,5S)-4,5-diphenyloxazolidine-2-one (100) onto chlorospiropentylideneacetates 2 c (102c-Bn and 102c-Me) and juggling with the set of transformation discussed above, the spiropentane amino-carboxylic acids 207,208 and 213 were also prepared either in racemic (208) or enantiomerically pure (207, 213) forms, the absolute configurations of which were determined on the basis of X-ray crystal structure analysis of the precursor... [Pg.203]

The third group of target molecules comprises chiral carboxylic acid and their derivatives esters, amides and nitriles. Enantiomerically pure esters are prepared in an analogous manner to the enantiomerically pure alcohols discussed earlier [i.e. by esterase- or lipase-catalyzed hydrolysis or (trans)esterification]. However, these reactions are not very interesting in the present context of cascade reactions. Amides can be produced by enantioselective ammoniolysis of esters or even the... [Pg.121]

Another approach to preparing enantiomerically pure carboxylic acids and related compounds is via enanhoselective reduction of conjugated double bonds using NAD(P)H-dependent enoate reductases (EREDs EC 1.3.1.X), members of the so-called Old Yellow Enzyme family [44]. EREDs are ubiquitous in nature and their catalytic mechanism is well documented [45]. They contain a catalytic flavin cofactor and a stoichiometric nicotinamide cofactor which must be regenerated (Scheme 6.23). [Pg.125]

In a similar approach, Kasture and coworkers describe the use of neat substrate (ethyl acetate both as alcohol donor and as the reaction medium) in the preparation of chirally pure S-(-)-l,4-benzodioxan-2-carboxylate, an important drug intermediate used in the synthesis of doxazosin mesylate, from racemic l,4-benzodioxan-2-carboxylic acid [138]. Again, CaLB catalyzed the transesterification reaction with good enanhoselectivity (E = 160) and acceptable enantiomeric excess (>95%) and chemical yield (50%). [Pg.41]


See other pages where Carboxylic acids enantiomerically pure is mentioned: [Pg.88]    [Pg.34]    [Pg.78]    [Pg.114]    [Pg.115]    [Pg.124]    [Pg.172]    [Pg.1027]    [Pg.110]    [Pg.123]    [Pg.456]    [Pg.1177]    [Pg.160]    [Pg.94]    [Pg.176]    [Pg.242]    [Pg.284]    [Pg.125]    [Pg.425]    [Pg.23]    [Pg.188]    [Pg.112]    [Pg.125]    [Pg.255]    [Pg.880]    [Pg.271]    [Pg.299]    [Pg.282]    [Pg.73]    [Pg.36]    [Pg.41]    [Pg.270]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Enantiomerically pure

Pure acids

© 2024 chempedia.info