Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetraisopropoxides

Zirconium alkoxides readily hydrolyze to hydrous zirconia. However, when limited amounts of water are added to zirconium alkoxides, they partially hydrolyze in a variety of reactions depending on the particular alkoxide (222). Zirconium tetraisopropoxide [2171 -98-4] reacts with fatty acids to form carboxjiates (223), and with glycols to form mono- and diglycolates (224). [Pg.438]

Transition metal-catalyzed epoxidations, by peracids or peroxides, are complex and diverse in their reaction mechanisms (Section 5.05.4.2.2) (77MI50300). However, most advantageous conversions are possible using metal complexes. The use of t-butyl hydroperoxide with titanium tetraisopropoxide in the presence of tartrates gave asymmetric epoxides of 90-95% optical purity (80JA5974). [Pg.36]

Yamamoto et al. have reported a chiral helical titanium catalyst, 10, prepared from a binaphthol-derived chiral tetraol and titanium tetraisopropoxide with azeotropic removal of 2-propanol [16] (Scheme 1.22, 1.23, Table 1.9). This is one of the few catalysts which promote the Diels-Alder reaction of a-unsubstituted aldehydes such as acrolein with high enantioselectivity. Acrolein reacts not only with cyclo-pentadiene but also 1,3-cyclohexadiene and l-methoxy-l,3-cyclohexadiene to afford cycloadducts in 96, 81, and 98% ee, respectively. Another noteworthy feature of the titanium catalyst 10 is that the enantioselectivity is not greatly influenced by reaction temperature (96% ee at... [Pg.18]

Another chiral titanium reagent, 11, was developed by Corey et al. [17] (Scheme 1.24). The catalyst was prepared from chiral ris-N-sulfonyl-2-amino-l-indanol and titanium tetraisopropoxide with removal of 2-propanol, followed by treatment with one equivalent of SiCl4, to give the catalytically-active yellow solid. This catalyst is thought not to be a simple monomer, but rather an aggregated species, as suggested by NMR study. Catalyst 11 promotes the Diels-Alder reaction of a-bro-moacrolein with cyclopentadiene or isoprene. [Pg.18]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

MeTi(OiPr)3] must be used in pure form rather than as a solution in hexane. Titanium tetraisopropoxide (95%) was obtained from ABCR, Karlsruhe by the submitters and from Aldrich Chemical Company by the checkers and was distilled under nitrogen before use. Titanium tetrachloride (>99%) was purchased from VWR by the submitters and from Aldrich Chemical Company by the checkers and was used without further purification. The submitters obtained a solution of methyllithium in ether (1.6M, 5 wt%) from Fluka. [Pg.9]

The best titanium mediator appears to be methyltitanium triisopropoxide, yet good yields are also obtained with titanium tetraisopropoxide and chlorotitanium triisopropoxide. The methyl group on titanium serves as a dummy alkyl ligand which is eliminated as methane after hydride transfer from the... [Pg.11]

In the presence of 1 equiv. of chlorotrimethylsilane, the transformation can be performed with substoichiometric amounts of titanium tetraisopropoxide (25 mol%) to yield 73% of the diastereomeric mixture of the corresponding, V,, V-d i al ky 1 am inocyclopropanc.7... [Pg.12]

MOCVD of Titania. Ti02 is often produced by the pyrolysis of a titanium alkoxide, such as titanium ethoxide, Ti(OC2H5)4, in an oxygen and helium atmosphere at 450°C. Another reaction is based on titanium tetraisopropoxide, Ti(OC3H-7)4, with oxygen at 300°C and at low pressure (< 1 Torr).P ]P ] These precursors have low boiling point (ca. 120°C). [Pg.309]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

The preparation method of titania support was described in the previous paper [6]. Titanium tetraisopropoxide (TTIP 97%, Aldrich) was used as a precursor of titania. Supported V0x/Ti02 catalysts were prepared by two different methods. The precipitation-deposition catalysts (P-V0x/Ti02) were prepared following the method described by Van Dillen et al. [7], in which the thermal decomposition of urea was used to raise homogeneously the pH of a... [Pg.225]

Colloidal TiOj is made by hydrolysing titanium tetrachloride or titanium tetra-isopropoxide. In the author s laboratory a procedure has been developed which allows one to obtain the colloid as a powder from titanium tetraisopropoxide, after careful evaporation of the solvent The powder can be redissolved to give a transparent... [Pg.149]

NMR spectroscopic studies of the titanium tetraisopropoxide-HOCSAC mixture seemed to prove that the bimetallic species was formed and was very... [Pg.172]

Ketones are less reactive than aldehydes toward organozinc reagents, and they are inherently less stereoselective because the differentiation is between two carbon substituents, rather than between a carbon substituent and hydrogen. Recently, a diol incorporating both franr-cyclohexanediamine and camphorsulfonic acid has proven effective in conjunction with titanium tetraisopropoxide.159... [Pg.656]

The epoxidation of allylic alcohols can also be effected by /-butyl hydroperoxide and titanium tetraisopropoxide. When enantiomerically pure tartrate ligands are included, the reaction is highly enantioselective. This reaction is called the Sharpless asymmetric epoxidation.55 Either the (+) or (—) tartrate ester can be used, so either enantiomer of the desired product can be obtained. [Pg.1082]

Sharpless epoxidation involves treating an allylic alcohol with titanium(IV) tetraisopropoxide [Ti(0-/Pr)4], tert-butyl hydroperoxide [t-BuOOH], and a specific enantiomer of a tartrate ester. [Pg.440]

A remarkable process was reported by Mori that forms aniline from dinitrogen (Equation (26)).106 Titanium nitrogen fixation complexes were generated from reactions of titanium tetrachloride or tetraisopropoxide, lithium metal, TMS chloride, and dinitrogen. These complexes generated a mixture of aryl and diarylamines in yields as high as 80% when treated with aryl halide and a palladium catalyst containing DPPF ... [Pg.381]

The 4 A Molecular Sieves System. The initial procedure for the Sharpless reaction required a stoichiometric amount of the tartrate Ti complex promoter. In the presence of 4 A molecular sieves, the asymmetric reaction can be achieved with a catalytic amount of titanium tetraisopropoxide and DET (Table 4-2).15 This can be explained by the fact that the molecular sieves may remove the co-existing water in the reaction system and thus avoid catalyst deactivation. Similar results may be observed in kinetic resolution (Table 4-3).15... [Pg.202]

The first synthetically useful reaction of titanium complexes of type 4, leading to the formation of two new carbon—carbon bonds, was developed by Kulinkovich et al. [55]. They found that treatment of a carboxylic acid ester with a mixture of one equivalent of titanium tetraisopropoxide and an excess of ethylmagnesium bromide at —78 to —40 °C affords 1-alkylcyclopropanols 9 in good to excellent yields (Scheme 11.2) [55,56], This efficient transformation can also be carried out with sub-stoichiometric amounts of Ti(OiPr)4 (5—10 mol%) [57,58]. In this case, an ethereal solution of two equivalents of EtMgBr is added at room temperature to a solution containing the ester and Ti(OiPr)4. Selected examples of this transformation are presented in Table 11.1 (for more examples, see ref. [26a]). [Pg.392]

Table 11.1. 1-Alkylcyclopropanols 9 from carboxylic acid esters and ethylmagnesium bromide in the presence of titanium tetraisopropoxide (see Scheme 11.2). Table 11.1. 1-Alkylcyclopropanols 9 from carboxylic acid esters and ethylmagnesium bromide in the presence of titanium tetraisopropoxide (see Scheme 11.2).
Table 11.4. 1,2-Disubstituted cyclopropanols 22 from carboxylic acid esters 8 and 2-substituted ethyl-magnesium halides in the presence of titanium tetraisopropoxide or chlorotitanium triisopropoxide. Entry Starting Product Conditions Yield Ref. Ester R1 R3 [mol% (%) R2 Ti(OR)4] (d. r. Z/Eb) ... Table 11.4. 1,2-Disubstituted cyclopropanols 22 from carboxylic acid esters 8 and 2-substituted ethyl-magnesium halides in the presence of titanium tetraisopropoxide or chlorotitanium triisopropoxide. Entry Starting Product Conditions Yield Ref. Ester R1 R3 [mol% (%) R2 Ti(OR)4] (d. r. Z/Eb) ...

See other pages where Tetraisopropoxides is mentioned: [Pg.998]    [Pg.1091]    [Pg.248]    [Pg.27]    [Pg.343]    [Pg.934]    [Pg.735]    [Pg.295]    [Pg.434]    [Pg.237]    [Pg.243]    [Pg.9]    [Pg.12]    [Pg.12]    [Pg.98]    [Pg.497]    [Pg.237]    [Pg.237]    [Pg.582]    [Pg.163]    [Pg.164]    [Pg.1182]    [Pg.49]    [Pg.1233]    [Pg.395]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Ti tetraisopropoxide

Tin tetraisopropoxide

Titanium Tetraisopropoxide asymmetric epoxidation reactions

Titanium Tetraisopropoxide compounds

Titanium Tetraisopropoxide transesterification

Titanium chloride tetraisopropoxide

Titanium tetraisopropoxide

Titanium tetraisopropoxide Sharpless epoxidation

Titanium tetraisopropoxide catalyst

Titanium tetraisopropoxide enantioselective reactions

Titanium tetraisopropoxide methanol reaction

Titanium tetraisopropoxide reaction with aldehydes

Titanium tetraisopropoxide thioallyl anions

Titanium tetraisopropoxide, allylic alcohol

Titanium tetraisopropoxide, allylic alcohol epoxidation

Titanium tetraisopropoxide, and

Titanium tetraisopropoxide-magnesium

Titanium triflate tetraisopropoxide

Zirconium tetraisopropoxide

© 2024 chempedia.info