Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium discovery

The Vinland Map, supposed evidence of the Viking discovery of America long before Columbus, was proclaimed a forgery after the detection in the ink of titanium white, a modem pigment (see Pigments, inorganic) (13). Subsequendy, however, after another analytical study, the interpretation of the eadiet results has been questioned, and the matter of authenticity of this unique document stiU remains an open question (14,15). [Pg.416]

Whereas zirconium was discovered in 1789 and titanium in 1790, it was not until 1923 that hafnium was positively identified. The Bohr atomic theory was the basis for postulating that element 72 should be tetravalent rather than a trivalent member of the rare-earth series. Moseley s technique of identification was used by means of the x-ray spectra of several 2ircon concentrates and lines at the positions and with the relative intensities postulated by Bohr were found (1). Hafnium was named after Hafma, the Latin name for Copenhagen where the discovery was made. [Pg.439]

Heterogeneous Catalysis. The main discovery of the 1980s was the use of titanium sihcaUte (TS-1) a synthetic zeoHte from the ZSM family containing no aluminum and where some titanium atoms replace siUcon atoms in the crystalline system (Ti/Si = 5%) (33). This zeoHte can be obtained by the hydrolysis of a siUcate and an alkyl titanate in the presence of quaternary ammonium hydroxide followed by heating to 170°C. Mainly studies have been devoted to the stmcture of TS-1 and its behavior toward H2O2 (34). The oxidation properties of the couple H2O2/TS-I have been extensively developed in... [Pg.488]

The mechanism of initiation in cationic polymerization using Friedel-Crafts acids appeared to be clarified by the discovery that most Friedel-Crafts acids, particularly haUdes of boron, titanium, and tin, require an additional cation source to initiate polymerization. Evidence has been accumulating, however, that in many systems Friedel-Crafts acids alone are able to initiate cationic polymerization. The polymerization of isobutylene for instance can be initiated, reportedly even in the absence of an added initiator, by AlBr or AlCl (19), TiCl ( )- Three fundamentally different... [Pg.245]

M-C (T bonds are not strong and, as might be expected for metals with so few d electrons, little help is available from synergic n bonding for instance, of the simple carbonyls only Ti(CO)6 has been reported, and that only on the basis of spectroscopic evidence. However, as will be seen on p. 972, the discovery that titanium compounds can be used to... [Pg.958]

Another issue important to the success of this chiral titanium reagent 31 was the discovery of a marked solvent effect. When the fumaric acid derivative is reacted with isoprene in the presence of 10 mol% of the titanium reagent 31 in toluene, poor optical purity results (36-68% ee). Interestingly the optical purity of the adduct greatly increased in the order benzene, toluene, xylenes, and mesitylene, with 92% ee obtained in the last. Mesitylene is difficult to remove, because of its high boiling point, and other solvents were screened in detail. As a result, the mixed solvent system toluene petroleum ether (1 1) was discovered to be very effective. [Pg.36]

High-pressure polymerization of ethylene was introduced in the 1930s. The discovery of a new titanium catalyst hy Karl Ziegler in 1953 revolutionized the production of linear unhranched polyethylene at lower pressures. The two most widely used grades of polyethylene are low-density polyethylene (LDPE) and high-density polyethylene (HDPE). Currently,... [Pg.325]

One of the exciting results to come out of heterogeneous catalysis research since the early 1980s is the discovery and development of catalysts that employ hydrogen peroxide to selectively oxidize organic compounds at low temperatures in the liquid phase. These catalysts are based on titanium, and the important discovery was a way to isolate titanium in framework locations of the inner cavities of zeolites (molecular sieves). Thus, mild oxidations may be run in water or water-soluble solvents. Practicing organic chemists now have a way to catalytically oxidize benzene to phenols alkanes to alcohols and ketones primary alcohols to aldehydes, acids, esters, and acetals secondary alcohols to ketones primary amines to oximes secondary amines to hydroxyl-amines and tertiary amines to amine oxides. [Pg.229]

Since the initial discovery, much work has gone into improving the catalyst. The original zeolite contained small pores that limited oxidations to relatively small molecules with shapes that allowed them to move in and out of that pore system. One modification has been to isolate titanium in zeolites with larger pores so larger molecules can be oxidized. Another modification has been to incorporate other metal ions into the frameworks of different zeolites with... [Pg.229]

Finally, the discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels-Alder reactions was made possible by a combinatorial approach.121 The object was to find a chiral titanium catalyst for the reaction of aldehydes (51) with Danishefsky s diene (91), with formation of cycloadduct (92) in >99% enantipurity (Equation (11)). [Pg.543]

Transition metal catalysis plays a key role in the polyolefin industry. The discovery by Ziegler and Natta of the coordination polymerization of ethylene, propylene, and other non-polar a-olefins using titanium-based catalysts, revolutionized the industry. These catalysts, along with titanium- and zirconium-based metallocene systems and aluminum cocatalysts, are still the workhorse in the manufacture of commodity polyolefin materials such as polyethylene and polypropylene [3-6],... [Pg.181]

Since its discovery in 1980,7 the Sharpless expoxidation of allylic alcohols has become a benchmark classic method in asymmetric synthesis. A wide variety of primary allylic alcohols have been epoxidized with over 90% optical yield and 70-90% chemical yield using TBHP (r-BuOOH) as the oxygen donor and titanium isopropoxide-diethyl tartrate (DET, the most frequently used dialkyl tartrate) as the catalyst. One factor that simplifies the standard epoxidation reaction is that the active chiral catalyst is generated in situ, which means that the pre-preparation of the active catalyst is not required. [Pg.196]

Particularly noteworthy is the discovery of a new type of the active catalyst 99,103,104 a crystalline, air-stable yellow-orange solid, which can serve as a highly enantioselective tool in the titanium-catalyzed hydrosilylation of imines. The reaction can be highly stereoselective for both acyclic and cyclic imines under a wide range of hydrogen pressures (Scheme 6-46). [Pg.374]

In 1990, Choudary [139] reported that titanium-pillared montmorillonites modified with tartrates are very selective solid catalysts for the Sharpless epoxidation, as well as for the oxidation of aromatic sulfides [140], Unfortunately, this research has not been reproduced by other authors. Therefore, a more classical strategy to modify different metal oxides with histidine was used by Moriguchi et al. [141], The catalyst showed a modest e.s. for the solvolysis of activated amino acid esters. Starting from these discoveries, Morihara et al. [142] created in 1993 the so-called molecular footprints on the surface of an Al-doped silica gel using an amino acid derivative as chiral template molecule. After removal of the template, the catalyst showed low but significant e.s. for the hydrolysis of a structurally related anhydride. On the same fines, Cativiela and coworkers [143] treated silica or alumina with diethylaluminum chloride and menthol. The resulting modified material catalyzed Diels-Alder reaction between cyclopentadiene and methacrolein with modest e.s. (30% e.e.). As mentioned in the Introduction, all these catalysts are not yet practically important but rather they demonstrate that amorphous metal oxides can be modified successfully. [Pg.500]

Polymerisations in hexane. The study of the reaction in hexane at low temperatures showed that it would not proceed in the absence of moisture [22, 28], and this was one of the observations which lead to the discovery of co-catalysis. The rates and DPs obtained when moist air was blown into a quiescent solution of isobutene and titanium tetrachloride in hexane were not very reproducible, and the reaction curves were S-shaped. Both the initial and maximum rates increased with increasing temperature [9], with ER = 8 1 kcal/mole. The DP increased with decreasing temperature [22], such that EDP = -2 0.5 kcal/mole. The relatively large, positive ER was taken to represent mainly E-, which seems reasonable since micro-crystalline ice must have been involved in some way in the initiation reaction. [Pg.92]

Plesch, Polanyi, and Skinner [28] found that HC1, S02, C02, EtOH, and EtzO were not cocatalysts, and the last two substances were shown to be inhibitors in that the addition of moist air to a solution containing them did not induce polymerisation. The search for co-catalysts other than water led to the discovery that trichloroacetic acid, sulphuric acid, and 20 percent oleum would act as a co-catalyst to titanium tetrachloride in hexane at about -75°, though none of these acids alone showed any catalytic activity under these conditions [9, 71]. [Pg.92]

The mechanism of initiation of cationic polymerisations by metal halides was clarified and systematized to some extent by the discovery of the phenomenon of co-catalysis or co-initiation. But, whereas there was, by the mid-1960s, good evidence that at any rate in many systems the halides of boron, titanium, and tin required a co-initiator, the position with regard to the best-known and most popular initiator, and the one which was of greatest economic significance, aluminium chloride, remained obscure. Of the vast number of published experiments on the system, aluminium chloride + isobutylene, hardly any could provide evidence concerning the initiation reaction, because they were almost exclusively concerned with measurements of yields and degree of polymerisation (DP). [Pg.296]

Several organo-titanium compounds with the oxidation states IV, III, II, 0,-1 have been prepared. A starting point was the discovery by Ziegler et al. (1955), Ziegler (1963) and Natta et al. (1955) and Natta (1963) of the catalytic properties of TiClj-Al-alkyl mixtures in hydrocarbons in reactions such as the ethylene and propylene polymerization. [Pg.396]

In the last decade an enormous revival of late transition catalysts for the polymerisation of alkenes has taken place [45] (remember that the first discovery of Ziegler for ethene polymerisation also concerned nickel and not titanium). The development of these catalysts is due to Brookhart in collaboration with DuPont (Figure 10.28) [46], Detailed low-temperature NMR studies have revealed the mechanism of the reaction [47], Interestingly, the resting state of the catalyst is the ethene-metal-alkyl complex and not the metal-alkyl complex as is the case for the ETM catalysts. For ETM catalysts the alkene complex intermediates are never observed. Thus, the migratory insertion is the rate-determining step (the turnover limiting step , in Brookhart s words) and the reaction rate is independent of the ethene concentration. [Pg.222]

The full paper on titanium-catalysed asymmetric epoxidation appeared in 1987 [6], once the improved catalytic procedure in the presence of molecular sieves had already been fully developed [5]. On the other hand, excellent "autobiographic" accounts have also been published in which "Everything You Ever Wanted to Know About the Discovery of Asymmetric Epoxidation" is honestly and vividly exposed by K. Barry Sharpless [4] [7]. [Pg.278]

So you can see why branching in the polymerization process can be a problem—the symmetry is affected. And you can get a hint why PP was commercialized long after polyethylene. The chemistry and catalysis are a lot more demanding. Thats why Giulio Natra won the Nobel Prize for his contribution to the field of stereo-catalysis, the discovery of the effects of titanium chloride and organo-aluminum compounds. [Pg.347]

Since the discovery of photoelectrochemical splitting of water on titanium dioxide (TiOj) electrodes (Fujishima and Honda, 1972), semiconductor-based photocatalysis has received much attention. Although TiO is superior to other semiconductors for many practical uses, two types of defects limit its photoeatalytic activity. Firstly, TiO has a high band-gap (E =3.2 eV), and it can be excited only by UV light (k < 387 nm), which is about 4-5% of the overall solar spectmm. Thus, this restricts the use of sunlight or visible light (Kormann et al., 1988). Secondly, the... [Pg.125]

Following the discovery of TS-1 [125], a titanium-substituted MFl, the use of zeolitic materials for oxidation increased significantly. The presence of the Ti atom in the framework of a zeolite structure provides a site-isolated Ti center, a situation not possible with other Ti-containing materials while also allowing shape-selective oxidations. The combination of the two effects gives highly active and selective oxidation reactions [126]. [Pg.387]

It should be noted that the catalytic version of the PK reaction was envisioned from the time of discovery, yet it was not until 1990 that the first example was reported using cobalt [10]. Since that report other variations of catalytic PK reactions employing cobalt, as well as titanium [11] and ruthenium [12], complexes have been reported. In addition to these examples, rhodium has been shown to catalyze the PK reaction, in which it was clear from the outset that this metal had a number of unique features [13]. A proposed mechanism for the generahzed PK-type reaction is illustrated in Scheme 11.3. [Pg.216]


See other pages where Titanium discovery is mentioned: [Pg.286]    [Pg.367]    [Pg.411]    [Pg.301]    [Pg.236]    [Pg.289]    [Pg.789]    [Pg.4]    [Pg.69]    [Pg.11]    [Pg.52]    [Pg.73]    [Pg.86]    [Pg.227]    [Pg.228]    [Pg.67]    [Pg.27]    [Pg.28]    [Pg.390]    [Pg.476]    [Pg.517]    [Pg.47]    [Pg.77]    [Pg.6]    [Pg.323]    [Pg.181]    [Pg.193]   
See also in sourсe #XX -- [ Pg.954 ]

See also in sourсe #XX -- [ Pg.290 ]

See also in sourсe #XX -- [ Pg.324 ]

See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Titanium reagent discovery

© 2024 chempedia.info