Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium complexes reactions

Several structures of the transition state have been proposed (I. D. Williams, 1984 K. A. Jorgensen, 1987 E.J. Corey, 1990 C S. Takano, 1991). They are compatible with most data, such as the observed stereoselectivity, NMR measuiements (M.O. Finn, 1983), and X-ray structures of titanium complexes with tartaric acid derivatives (I.D. Williams, 1984). The models, e. g., Jorgensen s and Corey s, are, however, not compatible with each other. One may predict that there is no single dominant Sharpless transition state (as has been found in the similar case of the Wittig reaction see p. 29f.). [Pg.124]

Similar to IFP s Dimersol process, the Alphabutol process uses a Ziegler-Natta type soluble catalyst based on a titanium complex, with triethyl aluminum as a co-catalyst. This soluble catalyst system avoids the isomerization of 1-butene to 2-butene and thus eliminates the need for removing the isomers from the 1-butene. The process is composed of four sections reaction, co-catalyst injection, catalyst removal, and distillation. Reaction takes place at 50—55°C and 2.4—2.8 MPa (350—400 psig) for 5—6 h. The catalyst is continuously fed to the reactor ethylene conversion is about 80—85% per pass with a selectivity to 1-butene of 93%. The catalyst is removed by vaporizing Hquid withdrawn from the reactor in two steps classical exchanger and thin-film evaporator. The purity of the butene produced with this technology is 99.90%. IFP has Hcensed this technology in areas where there is no local supply of 1-butene from other sources, such as Saudi Arabia and the Far East. [Pg.440]

Titanium Complexes of Unsaturated Alcohols. TetraaHyl titanate can be prepared by reaction of TYZOR TPT with aHyl alcohol, followed by removal of the by-product isopropyl alcohol. EbuUioscopic molecular weight determinations support its being the dimeric product, octaaHoxydititanium. A vinyloxy titanate derivative can be formed by reaction of TYZOR TPT with vinyl alcohol formed by enolization of acetaldehyde (11) ... [Pg.139]

Sohd, water-soluble a-hydroxycarboxyhc acid and oxaUc acid titanium complexes can be formed by reaction of the acid and a tetraaLkyl titanate in an inert solvent, such as acetone or heptane. The precipitated complex is filtered, rinsed with solvent, and dried to give an amorphous white soHd, which is water- and alcohol—water-soluble (81,82). [Pg.145]

Mixtures of a titanium complex of saturated diols, such as TYZOR OGT, and a titanium acylate, such as bis- -butyl-bis-caproic acid titanate, do not have a yellowing or discoloring effect on white inks used to print polyolefin surfaces (506). The complexes formed by the reaction of one or two moles of diethyl citrate with TYZOR TPT have an insignificant color on their own and do not generate color with phenol-based antioxidants (507). The complexes formed by the addition of a mixture of mono- and dialkyl phosphate esters to TYZOR TBT are also low color-generating, adhesion-promoting additives for use in printing polyolefin films (508). [Pg.163]

Sulfur imides with a single NR functionality, S5NR (6.12), SeNR (6.13) (R = Oct), " SgNH (6.14), ° and S9NH (6.15) ° are obtained by a methodology similar to that which has been used for the preparation of unstable sulfur allotropes, e.g., S9 and Sio. Eor example, the metathesis reaction between the bis(cyclopentadienyl)titanium complexes 6.8-6.10 and the appropriate dichlorosulfane yields 6.14 and 6.15 (Eq. 6.4). °... [Pg.116]

A chiral titanium complex with 3-cinnamoyl-l,3-oxazolidin-2-one was isolated by Jagensen et al. from a mixture of TiCl 2(0-i-Pr)2 with (2R,31 )-2,3-0-isopropyli-dene-l,l,4,4-tetraphenyl-l,2,3,4-butanetetrol, which is an isopropylidene acetal analog of Narasaka s TADDOL [48]. The structure of this complex was determined by X-ray structure analysis. It has the isopropylidene diol and the cinnamoyloxazolidi-none in the equatorial plane, with the two chloride ligands in apical (trans) position as depicted in the structure A, It seems from this structure that a pseudo-axial phenyl group of the chiral ligand seems to block one face of the coordinated cinnamoyloxazolidinone. On the other hand, after an NMR study of the complex in solution, Di Mare et al, and Seebach et al, reported that the above trans di-chloro complex A is a major component in the solution but went on to propose another minor complex B, with the two chlorides cis to each other, as the most reactive intermediate in this chiral titanium-catalyzed reaction [41b, 49], It has not yet been clearly confirmed whether or not the trans and/or the cis complex are real reactive intermediates (Scheme 1.60). [Pg.39]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

A new process developed by Institut Francais du Petrole produces butene-1 (1-butene) by dimerizing ethylene.A homogeneous catalyst system based on a titanium complex is used. The reaction is a concerted coupling of two molecules on a titanium atom, affording a titanium (IV) cyclic compound, which then decomposes to butene-1 by an intramolecular (3-hydrogen transfer reaction. ... [Pg.209]

A synthetically useful diastereoselectivity (90% dc) was observed with the addition of methyl-magnesium bromide to a-epoxy aldehyde 25 in the presence of titanium(IV) chloride60. After treatment of the crude product with sodium hydride, the yy -epoxy alcohol 26 was obtained in 40% yield. The yyn-product corresponds to a chelation-controlled attack of 25 by the nucleophile. Isolation of compound 28, however, reveals that the addition reaction proceeds via a regioselective ring-opening of the epoxide, which affords the titanium-complexed chloro-hydrin 27. Chelation-controlled attack of 27 by the nucleophile leads to the -syn-diastereomer 28, which is converted to the epoxy alcohol 26 by treatment with sodium hydride. [Pg.54]

Allyltrialkylsilanes add to aldehydes in the presence of a Lewis acid." The mechanism of this reaction has been examined." " When chiral titanium complexes are used in the reaction, allylic alcohols are produced with good asymmetric... [Pg.1211]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

The OEt-substituted Zr(IV)-boratabenzene complex has been employed in an interesting dual-catalyst approach to the synthesis of branched polyethylene.47 Capitalizing on the ability of this boratabenzene complex to generate 1-alkenes (Scheme 25) and the ability of the titanium complex illustrated in Scheme 27 to copolymerize ethylene and 1-alkenes, with a two-catalyst system one can produce branched polyethlene using ethylene as the only monomer (Scheme 27). The structure and properties of the branched polyethylene can be altered by adjusting the reaction conditions. [Pg.115]

Scheme 51 summarizes Mikami s synthesis of (R)-35, employing the car-bonyl-ene reaction of isoprene (A) with glyoxylate (B) to give C as catalyzed by a modified binaphthol-titanium complex [77]. [Pg.37]

The enantioselectivity of the reaction results from a titanium complex among the reagents that includes the enantiomerically pure tartrate ester as one of the ligands. [Pg.440]

Polysulfides of several metals can be prepared by reaction of the metals with excess sulfur in liquid NH3 (group IA metals) or by heating sulfur with the molten metal sulfide. The polysulfide ion binds to metals to form coordination compounds in which it is attached to the metal by both sulfur atoms (as a so-called bidentate ligand). One example is an unusual titanium complex containing the S52-ion that is produced by the following reaction (the use of h to denote the bonding mode of the cyclo-pentadienyl ion is explained in Chapter 16) ... [Pg.528]

Use of D2 yielded CD4, and methane was formed from reaction of the complex with just H2. The water produced in the reaction hydrolyzes the titanium complex to an inactive cluster Cp6Ti608 containing bridging oxide ligands. [Pg.374]

Titanium-mediated pinacol coupling reactions have been reviewed until 2000.80 81 Since then, various intermole-cular pinacol couplings have been reported with aldehydes, - ketones, a-ketoesters, and imines, as well as asymmetric versions thereof.101-104 Scheme 29 shows one example of an asymmetric pinacol coupling of aromatic aldehydes, promoted and catalyzed by the new chiral titanium complex (A)-75, that has been developed by Riant and co-workers.101 Yields for pinacol products 76 are generally high. Under catalytic conditions, ee is moderate (up to 63%), while stoichiometric conditions allow to obtain up to 91% ee. [Pg.418]


See other pages where Titanium complexes reactions is mentioned: [Pg.369]    [Pg.166]    [Pg.369]    [Pg.166]    [Pg.150]    [Pg.164]    [Pg.140]    [Pg.311]    [Pg.189]    [Pg.56]    [Pg.621]    [Pg.138]    [Pg.90]    [Pg.297]    [Pg.13]    [Pg.149]    [Pg.159]    [Pg.414]    [Pg.10]    [Pg.73]    [Pg.618]    [Pg.591]    [Pg.207]    [Pg.276]    [Pg.542]    [Pg.82]    [Pg.521]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.275 ]

See also in sourсe #XX -- [ Pg.275 , Pg.276 ]

See also in sourсe #XX -- [ Pg.2 , Pg.358 ]




SEARCH



Allyl titanium complexes, reaction with

Reactions Catalyzed by Titanium and Zirconium(IV) Complexes

Titanium complexe

Titanium complexes

Titanium complexes hydrolysis reactions

Titanium complexes ligand metathesis reactions

Titanium complexes metathesis reactions

Titanium complexes organic reactions

Titanium complexes reaction with dioxygen

Titanium complexes reactions with carbonyl compounds

Titanium complexes reduction reactions

Titanium complexes water exchange reaction

Titanium complexes, electron-transfer reactions

Titanium complexes, electron-transfer reactions alkyls

Titanium complexes, reaction with

Titanium complexes, reaction with carbon

Titanium complexes, reaction with carbon alkyls

Titanium complexes, reaction with carbon allyl

Titanium complexes, reaction with carbon dioxide

Titanium complexes, reaction with pyridines

Titanium imido complexes, reaction with

Titanium reactions

© 2024 chempedia.info