Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium anatase

Vanadium Catalysts Supported on Titanium (Anatase) Characterized by Ammonia and Low-Temperature Oxygen Chemisorption... [Pg.231]

Raman spectroscopy of [INFRARED TECHNOLOGY AND RAMAN SPECTROSCOPY - RAMAN SPECTROSCOPY] pol 14) Titanium dioxide, anatase [1317-70-0]... [Pg.997]

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

Naphthaleneamine. 1-Naphthylamine or a-naphth5iamine/7i5 -i2- can be made from 1-nitronaphthalene by reduction with iron—dilute HCl, or by catalytic hydrogenation it is purified by distillation and the content of 2-naphthylamine can be reduced as low as 8—10 ppm. Electroreduction of 1-nitronaphthalene to 1-naphthylamine using titania—titanium composite electrode has been described (43). Photoinduced reduction of 1-nitronaphthalene on semiconductor (eg, anatase) particles produces 1-naphthylamine in 77% yield (44). 1-Naphthylamine/7J4-J2-. can also be prepared by treating 1-naphthol with NH in the presence of a catalyst at elevated temperature. The sanitary working conditions are improved by gas-phase reaction at... [Pg.493]

The concentrated mother Hquor contains a large amount of sulfuric acid in a free form, as titanium oxy-sulfate, and as some metal impurity sulfates. To yield the purest form of hydrated TiOg, the hydrolysis is carried out by a dding crystallizing seeds to the filtrate and heating the mixture close to its boiling temperature, - 109° C. The crystal stmcture of the seeds (anatase or mtile) and their physical properties affect the pigmentary characteristics of the final product. [Pg.8]

The titanium oxide film consists of mtile or anatase (31) and is typically 250-A thick. It is insoluble, repairable, and nonporous in many chemical media and provides excellent corrosion resistance. The oxide is fully stable in aqueous environments over a range of pH, from highly oxidizing to mildly reducing. However, when this oxide film is broken, the corrosion rate is very rapid. Usually the presence of a small amount of water is sufficient to repair the damaged oxide film. In a seawater solution, this film is maintained in the passive region from ca 0.2 to 10 V versus the saturated calomel electrode (32,33). [Pg.102]

Titanium carbide is resistant to aqueous alkaU except in the presence of oxidising agents. It is resistant to acids except nitric acid, aqua regia, and mixtures of nitric acid with sulfuric or hydrofluoric acid. In oxygen at 450°C, a nonprotecting anatase coating forms. The reaction... [Pg.118]

Physical and Chemical Properties. Titanium dioxide [13463-67-7] occurs in nature in three crystalline forms anatase [1317-70-0] brookite [12188-41 -9] and mtile [1317-80-2]. These crystals are essentially pure titanium dioxide but contain small amounts of impurities, such as iron, chromium, or vanadium, which darken them. Rutile is the thermodynamically stable form at all temperatures and is one of the two most important ores of titanium. [Pg.120]

Anatase and mtile are produced commercially, whereas brookite has been produced by heating amorphous titanium dioxide, which is prepared from an alkyl titanate or sodium titanate [12034-34-3] with sodium or potassium hydroxide in. an autoclave at 200—600°C for several days. Only mtile has been synthesized from melts in the form of large single crystals. More recentiy (57), a new polymorph of titanium dioxide, Ti02(B), has been demonstrated, which is formed by hydrolysis of K Ti O to form 20, followed by subsequent calcination/dehydration at 500°C. The relatively open stmcture... [Pg.120]

It is accepted that, at normal pressures, mtile is the thermodynamically stable form of titanium dioxide at all temperatures. Calorimetric studies have demonstrated that mtile is more stable than anatase and that brookite and Ti02 (ii) have intermediate stabiHties, although the relative stabiHties of brookite and Ti02(ii) have not yet been defined. The transformation of anatase to mtile is exothermic, eg, 12.6 KJ/mol (9), although lower figures have also been reported (63). The rate of transformation is critically dependent on the detailed environment and may be either promoted or retarded by the presence of other substances. For example, phosphoms inhibits the transformation of anatase to mtile (64). [Pg.120]

Both anatase and mtile are broad band gap semiconductors iu which a fiUed valence band, derived from the O 2p orbitals, is separated from an empty conduction band, derived from the Ti >d orbitals, by a band gap of ca 3 eV. Consequendy the electrical conductivity depends critically on the presence of impurities and defects such as oxygen vacancies (7). For very pure thin films, prepared by vacuum evaporation of titanium metal and then oxidation, conductivities of 10 S/cm have been reported. For both siugle-crystal and ceramic samples, the electrical conductivity depends on both the state of reduction of the and on dopant levels. At 300 K, a maximum conductivity of 1 S/cm has been reported at an oxygen deficiency of... [Pg.121]

A high purity titanium dioxide of poorly defined crystal form (ca 80% anatase, 20% mtile) is made commercially by flame hydrolysis of titanium tetrachloride. This product is used extensively for academic photocatalytic studies (70). The gas-phase oxidation of titanium tetrachloride, the basis of the chloride process for the production of titanium dioxide pigments, can be used for the production of high purity titanium dioxide, but, as with flame hydrolysis, the product is of poorly defined crystalline form unless special dopants are added to the principal reactants (71). [Pg.121]

The main electroceramic apphcations of titanium dioxide derive from its high dielectric constant (see Table 6). Rutile itself can be used as a dielectric iu multilayer capacitors, but it is much more common to use Ti02 for the manufacture of alkaline-earth titanates, eg, by the cocalciuation of barium carbonate and anatase. The electrical properties of these dielectrics are extremely sensitive to the presence of small (<20 ppm) quantities of impurities, and high performance titanates require consistently pure (eg, >99.9%) Ti02- Typical products are made by the hydrolysis of high purity titanium tetrachloride. [Pg.121]

Titanium Dioxide. The specifications of titanium dioxide have been given previously. Titanium dioxide exists ia nature ia three crystalline forms anatase, brookite, and mtile, with anatase as the commonly available form. Anatase has a high refractive iadex (2.52) and excellent stabiUty toward light, oxidation, changes ia pH, and microbiological attack. Titanium dioxide is virtually iasoluble ia all common solvents. [Pg.452]

Titanium Dioxide. The recrystallization of titanium dioxide in a cover-coat glass is very important to the development of thin, highly opaque finish coats. Titania, Ti02, is the primary opacifying agent for white finish coats. Two polymorphic forms of titania, anatase and mtile, may be present in... [Pg.213]

Sulphate process. The ilmenite is reacted with sulphuric acid giving titanium sulphate and ferric oxide. After separation of ferric oxide, addition of alkali allows precipitation of hydrous titanium dioxide. The washed precipitate is calcined in a rotary kiln to render titanium dioxide. The nucleation and calcination conditions determine the crystalline structure of titanium dioxide (e.g. rutile or anatase). [Pg.635]

The main oxides are the dioxides. In fact, Ti02 is by far the most important compound formed by the elements of this group, its importance arising predominantly from its use as a white pigment (see Panel, p. 959). It exists at room temperature in three forms — rutile, anatase and brookite, each of which occurs naturally. Each contains 6-coordinate titanium but rutile is the most common form, both in nature and as produced commercially, and the others transform into it on heating. The rutile... [Pg.961]


See other pages where Titanium anatase is mentioned: [Pg.561]    [Pg.140]    [Pg.117]    [Pg.561]    [Pg.140]    [Pg.117]    [Pg.76]    [Pg.76]    [Pg.120]    [Pg.120]    [Pg.4]    [Pg.4]    [Pg.10]    [Pg.5]    [Pg.7]    [Pg.7]    [Pg.7]    [Pg.8]    [Pg.13]    [Pg.16]    [Pg.229]    [Pg.133]    [Pg.94]    [Pg.96]    [Pg.120]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.124]    [Pg.125]    [Pg.127]    [Pg.458]    [Pg.213]    [Pg.213]    [Pg.215]    [Pg.229]    [Pg.961]   
See also in sourсe #XX -- [ Pg.20 , Pg.26 ]




SEARCH



Anatase

Anatase structures, titanium oxides

Titanium anatase, synthesis

Titanium dioxide rutile and anatase

Titanium dioxide, anatase

Titanium oxide anatase, promoting

Titanium rutile, anatase

© 2024 chempedia.info