Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time Copolymers

The focus here will be on the consideration of designed copolymers exhibiting selective interactions with the siufaces and interfaces. In particular, we will consider some properties of adsorption-timed copolymers and partly cross-Unked polymer envelopes that function as a molecular dispenser. [Pg.90]

Polybutene-based hot-melt adhesives are tough, partially crystalline, and their slow crystallization rates lead to long open times. Copolymers of butene result in softer and more flexible adhesives. In general, polybutene and its copolymers have low temperatures for recrystallization from the melt. This permits stress release in the adhesive bond, which may have been applied to cold surfaces. Polybutene and its olefinic copolymers exhibit good bonding to nonpolar surfaces but poor compatibility with polar substances. These hot-melt adhesives have been used on rubbery substrates and are available as pressure-sensitive adhesives. [Pg.22]

Fig. 6. Snapshot from a dynamic density functional simulation of the self-organisation of the block copolymer PL64 (containing 30 propylene oxide rmd 26 ethylene oxide units (EO)i3(PO)3o(EO)i3) in 70% aqueous solution. The simulation was carried out during 6250 time steps on a 64 x 64 x 64 grid (courtesy of B.A.C. van Vlimmeren and J.G.E.M. Praaije, Groningen). Fig. 6. Snapshot from a dynamic density functional simulation of the self-organisation of the block copolymer PL64 (containing 30 propylene oxide rmd 26 ethylene oxide units (EO)i3(PO)3o(EO)i3) in 70% aqueous solution. The simulation was carried out during 6250 time steps on a 64 x 64 x 64 grid (courtesy of B.A.C. van Vlimmeren and J.G.E.M. Praaije, Groningen).
The following data were obtained on the same system described in Example 3.6. This time the copolymer (C) concentration is fixed at 25% by weight and the proportions of poly butadiene (B) and polyisoprene (I) are varied ... [Pg.196]

If rj = r2 = 1, the copolymer and the feed mixture have the same composition at all times. In this case Eq. (7.18) becomes... [Pg.428]

An ideal gas obeys Dalton s law that is, the total pressure is the sum of the partial pressures of the components. An ideal solution obeys Raoult s law that is, the partial pressure of the ith component in a solution is equal to the mole fraction of that component in the solution times the vapor pressure of pure component i. Use these relationships to relate the mole fraction of component 1 in the equilibrium vapor to its mole fraction in a two-component solution and relate the result to the ideal case of the copolymer composition equation. [Pg.429]

As we have already seen, it is the reactivity ratios of a particular copolymer system that determines both the composition and microstructure of the polymer. Thus it is important to have reliable values for these parameters. At the same time it suggests that experimental studies of composition and microstructure can be used to evaluate the various r s. [Pg.457]

Acrylonitrile copolymeri2es readily with many electron-donor monomers other than styrene. Hundreds of acrylonitrile copolymers have been reported, and a comprehensive listing of reactivity ratios for acrylonitrile copolymeri2ations is readily available (34,102). Copolymeri2ation mitigates the undesirable properties of acrylonitrile homopolymer, such as poor thermal stabiUty and poor processabiUty. At the same time, desirable attributes such as rigidity, chemical resistance, and excellent barrier properties are iacorporated iato melt-processable resias. [Pg.196]

Acrylonitrile has been grafted onto many polymeric systems. In particular, acrylonitrile grafting has been used to impart hydrophilic behavior to starch (143—145) and polymer fibers (146). Exceptional water absorption capabiUty results from the grafting of acrylonitrile to starch, and the use of 2-acrylamido-2-methylpropanesulfonic acid [15214-89-8] along with acrylonitrile for grafting results in copolymers that can absorb over 5000 times their weight of deionized water (147). [Pg.197]

Nitrile Rubber. Vulcanized mbber sheets of NBR and montmorillonite clay intercalated with Hycar ATBN, a butadiene acrylonitrile copolymer have been synthesized (36). These mbber hybrids show enhanced reinforcement (up to four times as large) relative to both carbon black-reinforced and pure NBR. Additionally, these hybrids are more easily processed than carbon black-filled mbbers. [Pg.329]

The aqueous phase into which the monomer mix is dispersed is also prepared in a separate tank before transferring to the copolymerization ketde. It contains a catalyst, such as benzoyl peroxide [94-36-0], to initiate and sustain the polymerization reaction, and chemicals that aid in stabilizing the emulsion after the desired degree of dispersion is achieved. Careful adherence to predeterrnined reaction time and temperature profiles for each copolymer formulation is necessary to assure good physical durabiHty of the final ion-exchange product. [Pg.373]

Although the reaction rate of ethylene and various copolymers differs substantially, the reaction constants can be estabUshed by using an arbitrary value of 1 for ethylene (5). Thus, a value of 0.1 would indicate that the comonomer reacts at 10 times the rate of ethylene. However, the wide range of reaction rates can present problems not only in determining the comonomer content of the final product but also in producing a homogeneous product (4,6). [Pg.376]

Commercial production of PE resias with densities of 0.925 and 0.935 g/cm was started ia 1968 ia the United States by Phillips Petroleum Co. Over time, these resias, particularly LLDPE, became large volume commodity products. Their combiaed worldwide productioa ia 1994 reached 13 X 10 metric t/yr, accouatiag for some 30% market share of all PE resias ia the year 2000, LLDPE productioa is expected to iacrease by 50%. A aew type of LLDPE, compositioaaHy uniform ethylene—a-olefin copolymers produced with metallocene catalysts, was first introduced by Exxon Chemical Company in 1990. The initial production volume was 13,500 t/yr but its growth has been rapid indeed, in 1995 its combiaed production by several companies exceeded 800,000 tons. [Pg.394]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

Copolymers. There are two forms of copolymers, block and random. A nylon block copolymer can be made by combining two or more homopolymers in the melt, by reaction of a preformed polymer with diacid or diamine monomer by reaction of a complex molecule, eg, a bisoxazolone, with a diamine to produce a wide range of multiple amide sequences along the chain and by reaction of a diisocyanate and a dicarboxybc acid (193). In all routes, the composition of the melt is a function of temperature and more so of time. Two homopolyamides in a moisture-equiUbrated molten state undergo amide interchange where amine ends react with the amide groups. [Pg.259]

As time progresses, the two homopolyamides in the melt form a block and eventually a random copolymer as a result of amide interchange (Fig. [Pg.259]

Fig. 16. Typical composition change with time for conversion of two homopolymers (° ), first to a block (D), and then to a random (A ) copolymer. Fig. 16. Typical composition change with time for conversion of two homopolymers (° ), first to a block (D), and then to a random (A ) copolymer.
Some time earlier, Eastman-Kodak has been working on a novel polyester as an entry into the important polyester fiber market and had devised a new ahcychc diol, 1,4-cydohexanedimethanol [105-08-5] effectively made by exhaustive hydrogenation of dimethyl terephthalate. Reaction of the new diol with dimethyl terephthalate gave a crystalline polyester with a higher melting point than PET and it was introduced in the United States in 1954 as a new polyester fiber under the trade name Kodel (5). Much later the same polyester, now called PCT, and a cyclohexanedimethanol—terephthalate/isophthalate copolymer were introduced as mol ding resins and thermoforming materials (6). More recentiy stiU, copolymers of PET with CHDM units have been introduced for blow molded bottie resins (7). [Pg.293]

Ionic polymerizations are almost exclusively solution processes. To produce monodisperse polymers or block copolymers, they must be mn batchwise, so that all chains grow for the same length of time under identical conditions. [Pg.437]


See other pages where Time Copolymers is mentioned: [Pg.150]    [Pg.296]    [Pg.150]    [Pg.296]    [Pg.542]    [Pg.2383]    [Pg.123]    [Pg.302]    [Pg.365]    [Pg.223]    [Pg.355]    [Pg.201]    [Pg.386]    [Pg.405]    [Pg.468]    [Pg.469]    [Pg.371]    [Pg.400]    [Pg.401]    [Pg.401]    [Pg.418]    [Pg.429]    [Pg.431]    [Pg.413]    [Pg.151]    [Pg.152]    [Pg.236]    [Pg.237]    [Pg.238]    [Pg.240]    [Pg.437]    [Pg.75]    [Pg.84]    [Pg.324]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Copolymer time-temperature superposition

Poly copolymers relaxation times

Relaxation time block copolymer exchange

Response time, electrochemical copolymers

Time-temperature superposition block copolymers

© 2024 chempedia.info