Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxides thin films

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Thin oxide films may be prepared by substrate oxidation or by vapour deposition onto a suitable substrate. An example of the fomrer method is the preparation of silicon oxide thin-films by oxidation of a silicon wafer. In general, however, the thickness and stoichiometry of a film prepared by this method are difficult to control. [Pg.941]

Inasmuch as friction conditions determine the flow characteristics of a powder, coarser powder particles of spherical shape flow fastest and powder particles of identical diameter but irregular shape flow more slowly. Finer particles may start to flow, but stop after a short time. Tapping is needed in order to start the flow again. Very fine powders (fine powder particles to coarser ones may increase the apparent density, but usually decreases the flow quality. Metal powders having a thin oxide film may flow well. When the oxide film is removed and the friction between the particles therefore increases, these powders may flow poorly. [Pg.181]

If K = 1 K, a = 0.25 nm, and z = 3, X = 30nm at 300 K, so that for a film 1 nm thick, the field increases the rate of growth by a factor of about 10 The term in the growth law due to the field, namely exp (K/X), is large only when X is small. Because of this a thin oxide film can form even at low temperatures where the ordinary rate of entry of ions into the oxide, is negligible. As the film thickens, the factor exp /X) decreases rapidly, and the rate of growth soon falls to such a low value that, for practical purposes, oxidation has ended. [Pg.261]

The terms hot corrosion or dry corrosion are normally taken to apply to the reactions taking place between metals and gases at temperatures above 100 C i.e. temperatures at which the presence of liquid water is unusual. The obvious cases of wet corrosion at temperatures above 100 C, i.e. in pressurised boilers or autoclaves, are not considered here. In practice, of course, common metals and alloys used at temperatures above normal do not suffer appreciable attack in the atmosphere until the temperature is considerably above 100 C. Thus iron and low-alloy steels form only the thinnest of interference oxide films at about 200 C, copper shows the first evidence of tarnishing at about 180 C, and while aluminium forms a thin oxide film at room temperature, the rate of growth is extremely slow even near the melting point. [Pg.951]

In the polarization curve for anodic dissolution of iron in a phosphoric acid solution without CP ions, as shown in Fig. 3, we can see three different states of metal dissolution. The first is the active state at the potential region of the less noble metal where the metal dissolves actively, and the second is the passive state at the more noble region where metal dissolution barely proceeds. In the passive state, an extremely thin oxide film called a passive film is formed on the metal surface, so that metal dissolution is restricted. In the active state, on the contrary, the absence of the passive film leads to the dissolution from the bare metal surface. The difference of the dissolution current between the active and passive states is quite large for a system of an iron electrode in 1 mol m"3 sulfuric acid, the latter value is about 1/10,000 of the former value.6... [Pg.222]

Generally, such a remarkable restriction of metal dissolution results not only from the formation of a thin surface oxide film but also from the formation of a comparatively thick film such as silver chloride or zinc chloride. In this chapter, however, we use the term passive film only for compact and thin oxide films. [Pg.224]

Figure 18. Dependence of activation barrier A f for the nucleation of a thin oxide film on the metal surface as a function of electrode potential. Ey is the equilibrium potential of anodic oxide formation.7 The solid line represents the value of A against and the dotted line corresponds to the critical potential for the film formation. AE = 0.2 V, Cd= -1Fm-2, am = 0.411 m 2, a -0.01 J m-2,... Figure 18. Dependence of activation barrier A f for the nucleation of a thin oxide film on the metal surface as a function of electrode potential. Ey is the equilibrium potential of anodic oxide formation.7 The solid line represents the value of A against and the dotted line corresponds to the critical potential for the film formation. AE = 0.2 V, Cd= -1Fm-2, am = 0.411 m 2, a -0.01 J m-2,...
Another type of supercapacitor has been developed in whieh instead of ideally polarizable electrodes, electrodes consisting of disperse platinum metals are used at which thin oxide films are formed by anodic polarization. Film formation is a faradaic process which in certain cases, such as the further partial oxidation and reduction of these layers, occurs under conditions close to reversibility. [Pg.372]

Films Once corrosion has started, its further progress very often is controlled by the nature of films, such as passive films, that may form or accumulate on the metallic surface. The classical example is the thin oxide film that forms on stainless steels. [Pg.9]

Another possibility of the appearance of a quasimetallic behaviour of metal oxides occurs with thin oxide films on metals. If the film thickness is sufficiently small (less than ca. 3nm), the electrons can tunnel through the oxide film, and the charge transfer actually proceeds between the level of solution species and the Fermi level of the supporting metal (Fig. 4.12). [Pg.321]

The fabrication of such a system can be accomplished only by nanofabrication, and different routes can be imagined in this context. We will focus in the following section on the template-controlled growth of metal clusters on thin oxide films, which has proven to give excellent results in terms of low complexity. This approach has been successfully employed for metal-on-metal systems (for a comprehensive review see [6]) and has recently been extended to metal growth on oxide films. [Pg.30]

As we have seen in the previous chapter, the apparent topography and corrugation of thin oxide films as imaged by STM may vary drastically as a function of the sample bias. This will of course play an important role in the determination of cluster sizes with STM, which will be discussed in the following section. The determination of the size of the metallic nanoparticles on oxide films is a crucial issue in the investigation of model catalysts since the reactivity of the particles may be closely related to their size. Therefore, the investigation of reactions on model catalysts calls for a precise determination of the particle size. If the sizes of the metal particles on an oxidic support are measured by STM, two different effects, which distort the size measurement, have to be taken into account. [Pg.39]

Thus, it is interesting to note that high-purity aluminum rests at a potential at which corrosion is at its minimum and is, indeed, relatively very small. It is also largely independent of the anions present in the electrolyte.69 This may be attributed to the coulombic repulsion of anions away from the surface by the negative charge on the metal. The latter seems not to be completely compensated in a thin oxide film, as shown schematically in Fig. 9, so that the solution side of the double layer formed at the O/S interface contains excess cations, anions being repelled. The anions could approach the O/S interface either at thicker films or at potentials more positive than the OCP. [Pg.422]

An answer to the first question may be found in noting that the electric field in a thin oxide film is different from that in a thick one and that weakening of electrostatic repulsion which prevents hydration and withdrawal of the O/S interface from the surface is a prerequisite for chemical dissolution. [Pg.433]

If measurements are made in thin oxide films (of thickness less than 5 nm), at highly polished Al, within a small acceptance angle (a < 5°), well-defined additional maxima and minima in excitation (PL) and emission (PL and EL) spectra appear.322 This structure has been explained as a result of interference between monochromatic electromagnetic waves passing directly through the oxide film and EM waves reflected from the Al surface. In a series of papers,318-320 this effect has been explored as a means for precise determination of anodic oxide film thickness (or growth rate), refractive index, porosity, mean range of electron avalanches, transport numbers, etc. [Pg.487]

With respect to the UHV-based techniques capable of providing chemical analysis, such as ESCA, AUGER, etc., several such studies have been performed. However, these studies were, by and large, performed on very thick oxide layers, formed after anodic oxidation of the Pt for many hours. Results from these studies thus have little bearing on the nature of the oxides formed on potential cycling. Part of the reason why these studies used such thick films lies in the considerable difficulty of detecting the thin oxide films formed during a potential sweep, even with relatively sensitive techniques. [Pg.267]

Measurement of the amount of tritium in the quenched samples was made by reheating them in a normal hydrogen ambient and measuring the evolved radioactivity. Since the samples contained tritium not only dissolved in the bulk crystal but also attached to the surface, mainly in a thin oxide film, measurements were made with and without removal of the latter by etching with HF, a procedure verified to remove the surface radioactivity. Their final results for the solubility s fell nicely on the Arrhenius line, ... [Pg.292]

Another possibility, suggested by Ichimiya and Furuichi, is that there may have been significant blockage of the escape of tritium from the samples by the presence of a thin oxide film, i.e., that the d s of Fig. 9 were not... [Pg.299]


See other pages where Oxides thin films is mentioned: [Pg.2725]    [Pg.164]    [Pg.64]    [Pg.459]    [Pg.224]    [Pg.247]    [Pg.1164]    [Pg.5]    [Pg.34]    [Pg.57]    [Pg.118]    [Pg.259]    [Pg.938]    [Pg.817]    [Pg.309]    [Pg.631]    [Pg.102]    [Pg.90]    [Pg.32]    [Pg.37]    [Pg.156]    [Pg.300]    [Pg.30]    [Pg.34]    [Pg.44]    [Pg.147]    [Pg.257]    [Pg.443]    [Pg.495]    [Pg.113]    [Pg.25]    [Pg.344]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Aluminum oxide thin films

Catalysis thin oxide film supports

Crystal structure, thin films changes with oxidation

Growth of thin oxide films

Iron oxide thin films

Metal Oxide-Based Thin-Film Transistors

Methanol oxidation reaction thin films

Nickel oxide thin film applications

Nickel oxide thin films

Oxidation films

Oxidation initial, thin film

Oxide Surfaces Single Crystals, Powders, Thin Films

Oxide films very thin

Oxide thin films, depositing from

Oxide thin films, depositing from solution

Solid oxide fuel cells thin-film

Thin film oxidation

Thin film oxidation

Thin films metal oxide gels

Thin films tantalum oxide

Thin oxide film formation, metal

Thin oxide film formation, metal chromium

Thin oxide film formation, metal copper

Thin oxide film formation, metal mechanism

Thin oxide film formation, metal nickel

Thin oxide film formation, metal physical

Thin oxide film formation, metal protective layer

Thin oxide film formation, metal silicon

Thin oxide film formation, metal tantalum

Thin oxide film formation, metal values

Thin-film micro-oxidation test

Ti/B binary oxide thin films

Ti/Si binary oxide thin films

Transparent Conducting Oxides and Thin-Film Transistors

Transparent Oxide Thin Film Transistors

Zinc oxide thin films

Zinc oxide thin films piezoelectric properties

© 2024 chempedia.info