Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermosetting resins vinyl ester

The typical resin systems include thermoset polyesters, vinyl esters, epoxies, polymi-dies, bismaleimide, and phenolics. Thermoplastics are also finding their way into filament winding. Wet thermoset filament winding requires a resin with viscosity in the range of 1000-3000 cpoise. Resin components are chosen on the basis of pot life, winding temperature, viscosity, gel time, and cure time. [Pg.801]

Thermosetting Resins. Epoxy resin, phenolic resin, unsaturated resin, vinyl ester resin, silicone resin, polyurethane resin and polyisocyanurate resin. [Pg.154]

Thermoset (epoxy, vinyl ester and phenolic resins) or thermoplastic prepreg can be used, as well as wet resin/dry fiber, to give composites with less than 2% voids. An autoclave is not required and epoxy composites can be produced some 10 times quicker. [Pg.920]

Grishchuk, S., Karger-Kocsis, J. Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym. Lett 5(1), 2-11 (2011)... [Pg.50]

A variety of thermosetting resins are used in SMC. Polyesters represent the most volume and are available in systems that provide low shrinkage and low surface profile by means of special additives. Class A automotive surface requirements have resulted in the development of sophisticated systems that commercially produce auto body panels that can be taken direcdy from the mold and processed through standard automotive painting systems, without additional surface finishing. Vinyl ester and epoxy resins (qv) are also used in SMC for more stmcturaHy demanding appHcations. [Pg.96]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

SCRIMP process This Seeman Composites Resin Infusion Process (SCRIMP) is described as a gas-assist resin transfer molding process. As an example glass fiber fabrics/ thermoset vinyl ester polyester plastic and polyurethane foam panels (for insulation) are placed in a segmented tool. A vacuum is pulled with a bag so that a huge amount of plastic can be drawn into the mold (Marco process approach). Its curved roof is made separately and bonded to the box with mechanical and adhesive fastening. It is similar to various reinforced plastics molding processes. [Pg.522]

In most applications, polyester and vinyl ester resins are used as the matrix materials. Epoxies are also used, although they require longer cure times and do not release easily from the pultrusion dies. Hence, thermosetting resins are most commonly used with pultrusion, although some high-performance thermoplastics such as PEEK and polysulfone can also be accommodated. In addition to the resin, the resin bath may contain a curing agent (initiator, cf. Section 3.3.1.2), colorants, ultraviolet stabilizer, and fire retardant. [Pg.796]

Common to all reinforced plastics are two ingredients, resin and reinforcement. Resin is an oiganic material, usually of high molecular weight, that can be molded and set into a final shape. Resins are of two basic types. Thermoplastic resins soften upon heating, are shaped in a mold, and retain that shape when cooled. Common examples are nylon, polyethylene, polypropylene, and polycarbonate. Thermosetting resins are placed in a mold and cured by the use of a catalyst, heat, or both, until they harden in the shape of the mold. Common examples are polyester, vinyl ester, epoxies, phenolics, and p olyure thanes. [Pg.94]

There are two types of cure reactions of thermosetting resins step (e.g., epoxies, phenolics, urethanes) and chain (e.g., unsaturated polyesters, vinyl esters, acrilates) polymerizations. In the first type, the size of the polymer chain increases because of the linking of the oligomers (e.g., monomers, dimers, etc.) to themselves. Short chains can be linked to long ones in a condensation reaction. In the second case, the size of the polymer chain increases because of... [Pg.75]

Matrix materials for commercial composites are mainly liquid thermosetting resins such as polyesters, vinyl esters, epoxy resins, and bismaleimide resins. Thermoplastic composites are made from polyamides, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherim-ide (PEI), and polyamide-imide (PAI). [Pg.207]

Core-shell emulsion polymers with a core or rubbery stage based on homopolymers or copolymers of butadiene are used as impact modifiers in matrix polymers, such as ABS, for styrene acrylonitrile copolymer methyl methacrylate (MMA) polymers, poly(vinyl chloride) (PVC), and in various engineering resins such as polycarbonate) (PC) poly(ester)s, or poly(styrene)s, further in thermosetting resins such as epoxies. [Pg.315]

VINYL ESTER RESINS. The vinyl ester resins are a relatively recent addition1 to thermosetting-polymer-chemistry. Superficially, they are similar to unsaturated polyester resins insofar as they contain ethylmic lmsaturation and are cured throngh a free-radical mechanism, usually in the presence of a vinyl monomer, such as styrene. However, close examination of the chemistry and structure of the vinyl ester resins demonstrates several basic differences which lead to their unique characteristics. [Pg.1688]

Core-shell rubber (CSR) particles are prepared by emulsion polymerization, and typically exhibit two or more alternating rubbery and glassy spherical layers (Lovell 1996 Chapter 8). These core-shell particles are widely used in thermoplastics, especially in acrylic materials (Lovell, 1996), and have also been used to modify thermosets, such as epoxies, cyanates, vinyl ester resins, etc. (Becu et al., 1995). [Pg.417]

The most common advanced composites are made of thermosetting resins, such as epoxy polymers (the most popular singlematrix material), polyesters, vinyl esters, polyurethanes, polyimids, cianamids, bismaleimides, silicones, and melamine. Some of the most widely used thermoplastic polymers are polyvinyl chloride (PVC), PPE (poly[phenylene ether]), polypropylene, PEEK (poly [etheretherketone]), and ABS (acrylonitrile-butadiene-styrene). The precise matrix selected for any given product depends primarily on the physical properties desired for that product. Each type of resin has its own characteristic thermal properties (such as melting point... [Pg.30]

Thermoset resins covers an extremely wide range, including phenol formaldehyde polymers, aminopolymers, PUs, epoxies, and thermoset polyesters, which include the alkyd and unsaturated vinyl ester resins. Of special interest at the present time are those that comprise the resin component of liber-reinforced composites that are finding increasing use in commercial and defense sectors, where fire resistance is of paramount importance. Typical resins used are those listed in Table 2.4 along with typical, respective LOI values in descending order of increased inherent fire resistance. [Pg.25]

FRP materials are made up of the polymer and reinforcing fibers. The polymer is typically a thermoset polymer thermoplastics can be used as well. Some typical thermoset polymers used are epoxy resins, unsaturated polyester resins, epoxy vinyl ester resins, phenolic resins, and high performance aerospace resins such as cyanate esters, polyimides, and bismaleimides. These resins... [Pg.703]

For commodity applications, there are four major classes of resins that are used in FRP applications. They are phenolic resin, epoxy resin, unsaturated polyester resin, and epoxy vinyl ester resins. A more complete description of these types of resins and their many variations can be found in Handbook of Thermoset Plastics. This is not a comprehensive list of resins used in composite manufacture, as commodity materials like polyurethanes and isocyanurate resins are sometimes used as well to make FRP parts. However, these materials are not covered in this chapter owing to their limited use, but, the principals of fire safety that apply for the resins described subsequently apply to these materials as well. [Pg.704]

The matrix is considered to be the binder for the microspheres. Typical matrix materials include (a) thermosetting resins such as epoxy resins, unsaturated polyesters, vinyl esters, phenolics, polyurethanes, and silicones (b) thermoplastic resins such as polyethylene, polystyrene, polyvinyl chloride (c) asphalt and (d) gypsiun and cement. [Pg.148]

The polymer eomponent, whieh is a thermosetting resin, forms eross-linked bonds between chains of molecules, whieh enhanees the eharacteristic of the produet. Unsaturated polyesters and vinyl esters are primarily used as resin systems. Epoxies are also used in some eases, but the eure eyele is longer. Phenolic resins have gained importanee these days because of their inherent properties, especially in applications that require lower flammability, reduced smoke generation, and higher thermal stability. New resin systems such as... [Pg.283]

Vinyl ester resins (VERs, epoxy methacrylates) are a major class of styrenated, free radically curable, corrosion- and chemical-resistant thermoset resins. They are largely used in fiber-reinforced structural applications, and they have a substantial history of long-term service in numerous environments at elevated temperatures and pressures, usually under load. [Pg.160]

This chapter will deal with the chemistry and applications of epoxies, phenolics, urethanes, and a variety of current vogue high-temperature polymers. Applications in fiber-reinforced plastics will be discussed in the individual sections on resin chemistry where appropriate. Separate sections will deal with adhesives and sealants. Adhesives are most important because, as early history demonstrates, they led the way to the application of resins in aerospace. A section is also included on silicone and polysulfide sealants. Although these materials are elastomers rather than resins, no discussion of aerospace polymers would be complete without some mention. Some major thermosetting polymers have been omitted from this review. Among these are the unsaturated polyesters, melamines, ureas, and the vinyl esters. Although these products do find their way into aerospace applications, the uses are so small that a detailed discussion is not warranted. [Pg.559]

Hetron 900 Series. [Ashland/Compos-ite Polymers] Vinyl ester resins for conoskm-resistant reinforced thermosetting idasdc equl Mnent... [Pg.170]

A fiberglass tank is made of vinyl ester resin, which is a thermoset and is semirigid in its composite form... [Pg.8]

Derakane . [Dow] Vinyl ester resin thermoset used in chem. processing industry, pulp and paper mills, pipe, filament winding. [Pg.102]


See other pages where Thermosetting resins vinyl ester is mentioned: [Pg.555]    [Pg.588]    [Pg.41]    [Pg.96]    [Pg.269]    [Pg.96]    [Pg.71]    [Pg.71]    [Pg.92]    [Pg.92]    [Pg.328]    [Pg.489]    [Pg.248]    [Pg.81]    [Pg.85]    [Pg.328]    [Pg.2314]    [Pg.27]    [Pg.168]    [Pg.960]    [Pg.7]    [Pg.527]    [Pg.25]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Ester Resins

Esters vinyl

Resin thermoset

Thermosetting resins

Vinyl ester resins

Vinyl resins

© 2024 chempedia.info