Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastics Epoxy resins

A compound, in the understanding of this chapter, is a thermosetting, thermoplastic, epoxy resin (cold curing) or elastomeric material with or... [Pg.166]

The most important step in using epoxy resins is to develop the appropriate epoxy formulation since most are used as precursors to a three-dimensional cross-linked network. With the exception of the very high MW phenoxy resins and the epoxy-based thermoplastics, epoxy resin is rarely used by itself. It is usually formulated with modifiers such as fillers and used in composite structures with glass fiber or... [Pg.2724]

Poel GV, Goossens S, Goderis B, Groeninckx G. Reaction induced phase separation in semicrystalline thermoplastic/epoxy resin blends. Polymer 2005 46 10758-71. [Pg.13]

Goossens S, Groeninckx G. High melting thermoplastic/epoxy resin blends influence of the curing reaction on the crystallization and melting behavior. J Polym Sci B Polym Phys 2007 45 2456-69. [Pg.37]

The binder system of a plastic encapsulant consists of an epoxy resin, a hardener or curing agent, and an accelerating catalyst system. The conversion of epoxies from the Hquid (thermoplastic) state to tough, hard, thermoset soHds is accompHshed by the addition of chemically active compounds known as curing agents. Flame retardants (qv), usually in the form of halogens, are added to the epoxy resin backbone because epoxy resins are inherently flammable. [Pg.530]

Thermosetting-encapsulation compounds, based on epoxy resins (qv) or, in some niche appHcations, organosiHcon polymers, are widely used to encase electronic devices. Polyurethanes, polyimides, and polyesters are used to encase modules and hybrids intended for use under low temperature, low humidity conditions. Modified polyimides have the advantages of thermal and moisture stabiHty, low coefficients of thermal expansion, and high material purity. Thermoplastics are rarely used for PEMs, because they are low in purity, requHe unacceptably high temperature and pressure processing conditions. [Pg.530]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Currendy, epoxy resins (qv) constitute over 90% of the matrix resin material used in advanced composites. The total usage of advanced composites is expected to grow to around 45,500 t by the year 2000, with the total resin usage around 18,000 t in 2000. Epoxy resins are expected to stiH constitute about 80% of the total matrix-resin-systems market in 2000. The largest share of the remaining market will be divided between bismaleimides and polyimide systems (12 to 15%) and what are classified as other polymers, including thermoplastics and thermoset resins other than epoxies, bismaleimides, cyanate esters, and polyimide systems (see Composites,polymer-matrix-thermoplastics). [Pg.19]

These transformers may be PVC taped, thermoplastic (polypropylene) moulded, fibreglass taped, polyester resin cast or epoxy resin cast depending upon the system voltage and the surroundings. HT indoor transformers, for instance, are generally polyester or epoxy resin cast, and are economical with good dielectric properties. They are resistant to humid, chemically contaminated and hazardous areas. Outdoor HT transformers, how-ever. may be epoxy... [Pg.457]

J. C. Hedrick, N. M. Patel, and J. E. McGrath, Toughening of Epoxy Resin Networks with Functionalized Engineering Thermoplastics, in Rubber Toughened Plastics, K. Riew (Ed.), American Chemical Society, Washington, DC, 1993. [Pg.370]

At the same time, natural adhesives such as casein glues, animal glue and polysaccharide gums have gradually been replaced by synthetic adhesives vinyl thermoplastic adhesives [poly(vinyl acetate)], adhesives obtained by reticulation in situ of two components (as epoxy resins), represent very important materials in this field. [Pg.28]

Resinous adducts, 10 394 Resinous odor, 3 229t Resins. See also Epoxy resins Lacquer resins Novolac resins Phenolic resins Resole resins Thermoplastic resins acidic cation-exchange, 12 191 advanced materials, 1 693 antilipemic agents, 5 141 aromatic glycidyl amine, 10 372—373 chromatographic, 14 383-384 for coatings, 7 95-107 derived from furfuryl alcohol, 12 271— 272... [Pg.801]

Poly(ethylene), low density Poly(e-caprolactam) 1933 1938 1939 1939 Thermoplastics Fibers, thermoplastics Silicone 1901 Epoxy resins 1938 1942 1946 1956 Fluids, resins, elastomers Adhesives... [Pg.9]

The plastic deformation in several amine and anhydride cured epoxy resins has been studied. The experimental results have been reasonably interpreted by the Argon theory. The molecular parameters determined from the data based on the theory reflect the different molecular structures of the resins studied. However, these parameters are in similar enough range to also show the structural similarity in these DGEBA based systems. In general, the mechanisms of plastic deformation in epoxy resins below T are essentially identical to those in amorphouE thermoplastics. The yield stress level being related to the modulus that controls the intermolecular energy due to molecular deformation will, however, be affected by the crosslinks in the thermosets. [Pg.143]

High molecular weight thermoplastics called phenoxy resins are formed by the hydrolysis of the epoxy resins so that no epoxy groups are present. These transparent resins can be further reacted, forming cross-linked material through reaction of the hydroxyl pendant groups with diisocyanates or cyclic anhydrides. [Pg.116]

Latexes are usually copolymer systems of two or more monomers, and their total solids content, including polymers, emulsifiers, stabilizers etc. is 40-50% by mass. Most commercially available polymer latexes are based on elastomeric and thermoplastic polymers which form continuous polymer films when dried [88]. The major types of latexes include styrene-butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyacrylic ester (PAE) and epoxy resin (EP) which are available both as emulsions and redispersible powders. They are widely used for bridge deck overlays and patching, as adhesives, and integral waterproofers. A brief description of the main types in current use is as follows [87]. [Pg.346]

The primary resin of interest is epoxy. Carbon-fiber-epoxy composites represent about 90% of CFRP production. The attractions of epoxy resins are that they polymerize without the generation of condensation products that can cause porosity, they exhibit little volumetric shrinkage during cure which reduces internal stresses, and they are resistant to most chemical environments. Other matrix resins of interest for carbon fibers include the thermosetting phenolics, polyimides, and polybismaleimides, as well as high-temperature thermoplastics such as polyether ether ketone (PEEK), polyethersulfone (PES), and polyphenylene sulfide. [Pg.500]

Although polyurethanes or other reactive resins can be used in RTM, the most common resins are polyesters and epoxies. The two pumping reservoirs in Figure 7.90, then, contain polyester resin and initiator, or epoxy resin and hardener, respectively. Epoxies require relatively long cycle times. When cycle time is critical, low viscosity vinyl ester, acrylamate, or urethanes can be injected very rapidly into the mold. Even the use of thermoplastics is possible. [Pg.799]

Diglycidyl ether of bisphenol-A (DGEBA), epoxy resin (YD 128, Kuk Do Chem., Mn = 378), and bisphenol-A dicyanate (BPACY, Arocy B-10, Ciba-Geigy) were used as the thermoset resin. 4,4 -diaminodiphenyl sulfone (DDS, Aldrich Chem. Co.) was used as a curing agent for epoxy. Polyetherimide (PEI, Ultem 1000, General Electric Co., M = 18,000) and 2-methyl imidazole (2MZ, Aldrich Chem. Co.) were used as the thermoplastic modifier and catalyst. [Pg.117]

Matrix materials for commercial composites are mainly liquid thermosetting resins such as polyesters, vinyl esters, epoxy resins, and bismaleimide resins. Thermoplastic composites are made from polyamides, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherim-ide (PEI), and polyamide-imide (PAI). [Pg.207]

Addition poly(imide) oligomers are used as matrix resins for high performance composites based on glass-, carbon- and aramide fibers. The world wide market for advanced composites and adhesives was about 70 million in 1990. This amounted to approximately 30-40 million in resin sales. Currently, epoxy resins constitute over 90% of the matrix resin materials in advanced composites. The remaining 10% are unsaturated polyester and vinylester for the low temperature applications and cyanate esters and addition poly(imides) for high temperatures. More recently thermoplastics have become important and materials such as polyimides and poly(arylene ether) are becoming more competitive with addition polyimides. [Pg.167]


See other pages where Thermoplastics Epoxy resins is mentioned: [Pg.67]    [Pg.21]    [Pg.67]    [Pg.21]    [Pg.19]    [Pg.291]    [Pg.144]    [Pg.251]    [Pg.452]    [Pg.319]    [Pg.7]    [Pg.20]    [Pg.182]    [Pg.802]    [Pg.814]    [Pg.835]    [Pg.280]    [Pg.17]    [Pg.326]    [Pg.37]    [Pg.339]    [Pg.348]    [Pg.136]    [Pg.143]    [Pg.236]    [Pg.121]    [Pg.182]    [Pg.235]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Epoxy resins thermoplastic modification

Thermoplastic epoxy

Thermoplastic resin

Thermoplastic toughened epoxy resin

Thermoplastic-modified epoxy resin

© 2024 chempedia.info