Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastic elastomers, synthesis polyamides

Plastomer, a nomenclature constructed from the synthesis of the words plastic and elastomer, illustrates a family of polymers, which are softer (lower hexural modulus) than the common engineering thermoplastics such as polyamides (PA), polypropylenes (PP), or polystyrenes (PS). The common, current usage of this term is reshicted by two limitahons. First, plastomers are polyolehns where the inherent crystallinity of a homopolymer of the predominant incorporated monomer (polyethylene or isotactic polypropylene [iPP]) is reduced by the incorporahon of a minority of another monomer (e.g., octene in the case of polyethylene, ethylene for iPP), which leads to amorphous segments along the polymer chain. The minor commoner is selected to distort... [Pg.165]

Block copolymer systems have aroused interest with reviews of the synthesis of nylon elastomers, thermoplastic polyether-polyamide elastomers, and thermoplastic cross-linked polyamides of 3,3 -bis(hydroxymelhyl) glutaric add. Block copolymers were also reported from poly(/n-phenylene isophthalamidc) and poly(ethylene oxide) or poly(dimethylsiloxane). The polycondensation of oco -dicarboxylic-poly(amide 11) and x -dihydroxy-polyoxyethylene has also been studied and rate constants and activation energies evaluated for the process. The polycondensation of axo -diacid and e9o> -diester-poly(amide 11) oligomers with cuco -dihydroxy-polyether oligomers has similarly been reported. Lactam Rli -opening Polymerization Routes.—The effects of ring size, substitution and the presence of heteroatoms on the polymerizability of lactams has been the subject of reviews. - In the field of lactam polymerization, two systems have evoked major interest, namely caprolactam and 2-pyrrolidone. Studies on caprolactam have reported the effect of water on the mechanism of polymerization and polymerization rate, where it was found that the process was... [Pg.93]

Because of their high technical properties, polyamide-based thermoplastic elastomers have attracted a lot of interest and their synthesis has been attempted via various polymerization techniques. On the industrial scale, the major companies are producing TPE-A via one- and two-step thermal polymerization processes. Many parameters have to be adjusted to ensure optimal reaction efficiency, including catalyst nature and content, temperature, vacuum level and stirring rate. Obviously, all these parameters are also dependent on the nature of the raw materials used, since some polyamide/polyether pairs, depending on their structure and/or the nature of their end-groups, are easier to prepare than others. [Pg.257]

It should be mentioned that the Contributors, the Editor, as well as the Publisher are well aware that, strictly speaking, the title Condensation Thermoplastic Elastomers is chemically not sufficiently correct for the covered classes of polymers. Nevertheless, it was preferred, e.g., to the chemically correct title Thermoplastic Elastomers by Poly condensation and Polyaddition , at least for the following reasons (i) the polyurethane group behaves chemically much more as a typical polyester or polyamide group, rather than as a polyolefin, (ii) similarly to other cases e.g., the synthesis of nylon 6) regardless of the chemical route of the synthesis, via polymerization or via polycondensation, the final polymer is distinguished by a chemical structure typical of polycondensates, and (iii) the selected title sounds more comprehensive and more attractive. [Pg.625]

Uses Organic synthesis lacquers comonomer for alkyd resins comonomer for thermoplastic polyamides polyester hot-melt adhesives low-temp. plasticizers urethane elastomers polymer modifier in food-pkg. [Pg.983]

This book covers both fundamental and applied research associated with polymer-based nanocomposites, and presents possible directions for further development of high performanee nanocomposites. It has two main parts. Part I has 12 chapters which are entirely dedicated to those polymer nanocomposites containing layered silicates (clay) as an additive. Many thermoplastics, thermosets, and elastomers are included, such as polyamide (Chapter 1), polypropylene (Chapter 4), polystyrene (Chapter 5), poly(butylene terephthalate) (Chapter 9), poly(ethyl acrylate) (Chapter 6), epoxy resin (Chapter 2), biodegradable polymers (Chapter 3), water soluble polymers (Chapter 8), acrylate photopolymers (Chapter 7) and rubbers (Chapter 12). In addition to synthesis and structural characterisation of polymer/clay nanocomposites, their unique physical properties like flame retardancy (Chapter 10) and gas/liquid barrier (Chapter 11) properties are also discussed. Furthermore, the crystallisation behaviour of polymer/clay nanocomposites and the significance of chemical compatibility between a polymer and clay in affecting clay dispersion are also considered. [Pg.612]


See other pages where Thermoplastic elastomers, synthesis polyamides is mentioned: [Pg.331]    [Pg.105]    [Pg.485]    [Pg.489]    [Pg.726]    [Pg.365]   
See also in sourсe #XX -- [ Pg.560 , Pg.561 ]




SEARCH



Elastomers polyamides

Elastomers synthesis

Syntheses polyamides

Synthesis thermoplastic elastomers

Thermoplastic elastomers

Thermoplastic elastomers polyamide

Thermoplastics polyamides

Thermoplastics synthesis

© 2024 chempedia.info