Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics polymeric surfactants

Tethering may be a reversible or an irreversible process. Irreversible grafting is typically accomplished by chemical bonding. The number of grafted chains is controlled by the number of grafting sites and their functionality, and then ultimately by the extent of the chemical reaction. The reaction kinetics may reflect the potential barrier confronting reactive chains which try to penetrate the tethered layer. Reversible grafting is accomplished via the self-assembly of polymeric surfactants and end-functionalized polymers [59]. In this case, the surface density and all other characteristic dimensions of the structure are controlled by thermodynamic equilibrium, albeit with possible kinetic effects. In this instance, the equilibrium condition involves the penalties due to the deformation of tethered chains. [Pg.46]

Diblock copolymers consisting of soluble and insoluble parts (Fig. 2b) act much as grafted chains once they are adsorbed on the surface. However, the thermodynamics of the initial solution, consisting primarily of micelles, and the conformation of the insoluble blocks on the surface affect the coverage in ways not well understood (e.g., Munch and Gast, 1988 Marques et al., 1988 Gast, 1989). Many dispersants or polymeric surfactants are synthesized in this way (Reiss et al, 1987). [Pg.138]

Closely related to the polymeric surfactant stabilization of microparticle surfaces is the stabilization of surfaces by the segregation of one component of a blend. This powerful method of surface engineering involves the inherent thermodynamically driven enrichment of surfaces by the blend component possessing the lowest surface energy. [Pg.161]

Microemulsion polymerization is a term used to describe thermodynamically stable surfactant-rich microemulsions and polymerization therein. [Pg.1065]

Incorporation of long-chain hydrocarbon hydrophobes into a cellulose ether backbone leads to an interesting new class of polymeric surfactants. Their enhanced solution viscosity can be explained in terms of intermolecular associations via the hydrophobe moieties. Entropic forces cause the polymer hydrophobes to cluster to minimize the disruption of water structure. The same thermodynamic principles that are used to explain the micellization of surfactants can be applied to explain the solution behavior of HMHEC. HMHECs interact with surfactants that modify their solution viscosities. The chemical nature and the concentration of the surfactant dictate its effect on HMHEC solution behavior. The unique rheological properties of HMHEC can be exploited to meet industrial demands for specific formulations and applications. [Pg.363]

In this paper we review principles relevant to colloids in supercritical fluids colloids in liquids are discussed elsewhere [24]. Thermodynamically unstable emulsions and latexes in CO2 require some form of stabilization to maintain particle dispersion and prevent flocculation. Flocculation may be caused by interparticle van der Waals dispersion forces (Hamaker forces). In many of the applications mentioned above, flocculation of the dispersed phase is prevented via steric stabilization with surfactants, in many cases polymeric surfactants. When stabilized particles collide, polymers attached to the surface impart a repulsive force, due to the entropy lost when the polymer tails overlap. The solvent in the interface between the particles also affects the sign and range of the interaction force, and the effect of solvent is particularly important for highly compressible supercritical solvents. Since the dielectric constant of supercritical CO2 and alkanes is low, electrostatic stabilization is not feasible [24] and is not discussed here. For lyophobic emulsion and latex particles (-1 xm), the repulsive... [Pg.211]

Promoting compatibility between polymeric surfactants and related polymers is not straightforward. The reason is that when one looks into the Gibbs energy change for a polymeric-based mixture, AG, which is thermodynamically derived as... [Pg.261]

To understand the solution behavior of polymeric surfactants of the block-and-graft type, it is essential to consider the solution properties of the more simple homopolymers. The solution behavior of homopolymers was considered in the thermodynamic treatment of Flory and Huggins. [Pg.92]

This section will deal with the above interfacial aspects starting with the equilibrium aspects of surfactant adsorption at the air/water and oil/water interfaces. Due to the equilibrium aspects of adsorption (rate of adsorption is equal to the rate of desorption) one can apply the second law of thermodynamics as analyzed by Gibbs (see below). This is followed by a section on dynamic aspects of surfactant adsorption, particularly the concept of dynamic surface tension and the techniques that can be applied in its measurement. The adsorption of surfactants both on hydrophobic surfaces (which represent the case of most agrochemical solids) as well as on hydrophilic surfaces (such as oxides) will be analyzed using the Langmuir adsorption isotherms. The structure of surfactant layers on solid surfaces will be described. The subject of polymeric surfactant adsorption will be dealt with separately due to its complex nature, namely irreversibility of adsorption and conformation of the polymer at the solid/liquid interface. [Pg.180]

In general, one can define three classes of foams unstable, metastable, and solid. While all foams containing fluid phases are thermodynamically unstable, their degree of stability or persistence can vary from seconds to weeks. Unstable or low-persistence foams, as the term implies, remain for a very short time and collapse as a result of the overwhelming effects of surface tension and gravitational forces. More-or-less persistent foams can, however, be produced in the presence of extremely small amounts of amphiphilic substances or in the presence of polymers. As little as 5 ppm of saponin, a natural polymeric surfactant extracted from certain trees, in water can produce a foam of finite, though transient, stability. [Pg.247]

Microemulsion Polymerization. Polyacrylamide microemulsions are low viscosity, non settling, clear, thermodynamically stable water-in-od emulsions with particle sizes less than about 100 nm (98—100). They were developed to try to overcome the inherent settling problems of the larger particle size, conventional inverse emulsion polyacrylamides. To achieve the smaller microemulsion particle size, increased surfactant levels are required, making this system more expensive than inverse emulsions. Acrylamide microemulsions form spontaneously when the correct combinations and types of oils, surfactants, and aqueous monomer solutions are combined. Consequendy, no homogenization is required. Polymerization of acrylamide microemulsions is conducted similarly to conventional acrylamide inverse emulsions. To date, polyacrylamide microemulsions have not been commercialized, although work has continued in an effort to exploit the unique features of this technology (100). [Pg.143]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

Macromonomers afford a powerful means of designing a vast variety of well-defined graft copolymers. These species are particularly useful in the field of polymer blends as compatibilizers and/or stabilizers (surfactants). When macromonomer itself is an amphiphilic polymer, then its polymerization in water usually occurs rapidly as a result of organization into micelles. In copolymerizations, important factors for macromonomer reactivity are the thermodynamic repulsion or incompatibility between the macromonomer and the trunk polymer and its partitioning between the continuous phase and the polymer particles [4,5]. [Pg.6]

With monomeric molecules, the aggregation number of micelles is determined by equilibrium thermodynamics. In polymeric molecules, however, topological constraints are imposed on the system. If the degree of polymerization exceeds the aggregation number of the monomeric micelle, unsaturated sites of the polymeric molecules become available (directed to the aqueous phase) and inter-molecular interactions (agglomeration) occur. In the case of polymer with Mw= 6.23x105, typical surfactant behavior was found. [Pg.22]

If not only geometric, but also thermodynamic parameters are taken into consideration, the difference between the self-assembly of polymeric amphiphiles compared to low molecular weight surfactants is even more pronounced. The two major contributions to the free energy of the system are 1) the loss of entropy when flexible parts of the amphiphile are enforced in the restricted environment of the aggregates, and 2) the interfacial energy... [Pg.159]

The emulsion polymerization methodology is one of the most important commercial processes. The simplest system for an emulsion (co)polymerization consists of water-insoluble monomers, surfactants in a concentration above the CMC, and a water-soluble initiator, when all these species are placed in water. Initially, the system is emulsified. This results in the formation of thermodynamically stable micelles or microemulsions built up from monomer (nano)droplets stabilized by surfactants. The system is then agitated, e.g., by heating it. This leads to thermal decomposition of the initiator and free-radical polymerization starts [85]. Here, we will consider a somewhat unusual scenario, when a surfactant behaves as a polymerizing comonomer [25,86]. [Pg.36]

Frey, W.,Ringsdorf, H., Sackmann, E., Schneider, J. 1987. Preparation, Microstructure and thermodynamic Properties of Homogeneous and Heterogeneous Compound Monolayers of Polymerized and Monomeric Surfactants on the Air/Water Interlace and on Solid Substrates. Macromolecules 20,1312... [Pg.76]

Microemulsions are thermodynamically stable, clear fluids, composed of oil, water, surfactant, and sometimes co-surfactant that have been widely investigated during recent years because of their numerous practical applications. The chemical structure of surfactants may have a low molecular weight as well as being polymeric, with nonionic or ionic components [138-141]. For a water/oil-continuous (W/O) microemulsion, at low concentration of the dispersed phase, the structure consists of spherical water droplets surrounded by a monomolecular layer of surfactant molecules whose hydrophobic tails are oriented toward the continuous oil phase (see Fig. 6). When the volume fractions of oil and water are high and comparable, random bicontinuous structures are expected to form. [Pg.31]

Single-step preparations of composite polymers have been examined in previous sections. The volume fraction of the continuous phase was, however, relatively small in those cases. In contrast, the present method allows us to prepare composites with larger volume fractions of the continuous phase. Composites with large volume fractions of the continuous phase can also be obtained in a single-step by polymerizing an emulsion or a microemulsion [24]. An emulsion of a hydrophobic (hydrophilic) monomer in another hydrophilic (hydrophobic) monomer can be extremely stable (even thermodynamically stable, and then it is called a microemulsion) if a sufficiently large amount of surfactant is introduced into the system. For an emulsion to be thermodynamically stable, a cosurfactant is in most cases needed besides the surfactant. The latter method was used to prepare composites by employing acrylamide... [Pg.40]

If the surfactant concentration in a macroemulsion is greatly increased, or if the monomer concentration is greatly reduced, a microemulsion results. Microemulsions are thermodynamically stable systems in which all of the monomer resides within the micelles. At high surfactant concentration, the micelles may form a bicontinuous network, rather than discrete micelles. Polymerization (with water- or oil-soluble initiator) of the monomer within a microemulsion is referred to as microemulsion polymerization. The particles produced in this way are extremely small, ranging from 10 to 100 nm. [Pg.135]

A third type of emulsion process is the so-called microemulsion [123]. In microemulsions, the polymerization starts in droplets as well. However, these are thermodynamically stable and, in contrast to miniemulsions, they form spontaneously by gentle stirring. They consist of large amounts of surfactants or mixtures of them, and they possess an interfacial tension close to zero at the water/oil interface, with droplet sizes usually ranging between 5 and 50 nm. In... [Pg.160]


See other pages where Thermodynamics polymeric surfactants is mentioned: [Pg.285]    [Pg.330]    [Pg.216]    [Pg.7]    [Pg.285]    [Pg.467]    [Pg.49]    [Pg.350]    [Pg.3717]    [Pg.516]    [Pg.187]    [Pg.401]    [Pg.540]    [Pg.138]    [Pg.658]    [Pg.670]    [Pg.374]    [Pg.27]    [Pg.51]    [Pg.92]    [Pg.540]    [Pg.6]    [Pg.374]    [Pg.448]    [Pg.125]   
See also in sourсe #XX -- [ Pg.374 ]

See also in sourсe #XX -- [ Pg.374 ]




SEARCH



Polymeric surfactant

Polymerization surfactant

Polymerization thermodynamics

Surfactant thermodynamics

© 2024 chempedia.info