Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization thermodynamics

The last isomerization is remarkable in that the triple bond can shift through a long carbon chain to the terminus, where it is fixed as the (kinetically) stable acetylide. The reagent is a solution of potassium diami no-propyl amide in 1,3-di-aminopropane. In some cases alkali metal amides in liquid ammonia car also bring about "contra-thermodynamic" isomerizations the reactions are successful only if the triple bond is in the 2-position. [Pg.88]

Various terminal allylic compounds are converted into l-alkenes at room temperature[362]. Regioselective hydrogenolysis with formate is used for the formation of an exo-methylene group from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic position[380]. Selective conversion of myrtenyl formate (579) into /9-pinene is an example. The allylic sulfone 580 and the allylic nitro compound... [Pg.368]

Table 5.4. Thermodynamic Isomerization Equilibria of Butanes, Pentanes, and Hexanes at Various Temperatures85... Table 5.4. Thermodynamic Isomerization Equilibria of Butanes, Pentanes, and Hexanes at Various Temperatures85...
McKinney, R.J. (1985) Kinetic control in catalytic olefin isomerization. An explanation for the apparent contra-thermodynamic isomerization of 3-pentenenitrile. Organometallics, 4, 1142. [Pg.122]

Both sn-l and 5-W-3-MG can be acylated to form sn-l, 3-DG, but these are poor precursors of TG (35) however, this transformation may be fatty acid or species dependent (36). Nevertheless, after loading with MG with equilibrium thermodynamic isomeric composition, the well-known postprandial chylomicronemia, triglyceridemia, and shift of the fatty acid composition of serum TG and nonesterified fatty acids toward that of the fat fed are much less pronounced than after natural fat feeding (37). However, when MG are fed together with FFA, effects similar to these of TG feeding are obtained (Fig. 2). [Pg.70]

If the allyl group of the aryl allyl ether featured a tri- or tetra-substituted alkene, then the thermodynamic isomerization to the aromatic benzofuran could not occur, and dihydroben-zofurans were consequently produced in good to excellent yields (Figure 9.8). As in the benzofuran systems, a host of aryl and alkyl substitution patterns were tolerated in this oxidative cyclization. A number of polycyclic and highly functionalized dihydrobenzofurans were obtained via this palladium(II)-catalysed oxidation. [Pg.373]

Regioselective hydrogenolysis with formates is used for the preparation of exomethylene compounds from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic positionf (Scheme 6). [Pg.254]

Because the overall change effected is conversion of an internal olefin into a terminal one, this process effects contra-thermodynamic isomerization of the internal olefin (usually, terminal olefins may be converted into internal olefins under the influence of acid catalysts). [Pg.74]

Full details are now available of Overman s procedures for [1,3] transposition of allyl alcohols using the mercuric salt-catalysed [3,3] sigmatropic rearrangement of their dimethyl carbamate derivatives (Scheme 28). The evidence suggests a cyclic intermediate (46), such that the reaction may be termed as cyclization induced . This sequence is rather limited in scope if employed as a preparative method for contra-thermodynamic isomerization of the allylic... [Pg.146]

Olefin Isomerization- a variety of transition metal (RhCl3 H20) catalyst will isomerize doubles bonds to more thermodynamically favorable configurations (i.e. more substituted, trans, conjugated)... [Pg.111]

The composition of the products from the isomerization of an unsaturated compound under the influence of a catalytic amount of a base is governed by the relative thermodynamic stabilities of the starting compound and the product. Of particular synthetic interest are isomerizations in which there is an accumulation of an isomer in the isomerization sequence. Isolation of the desired intermediate in a reasonable state of purity is often a matter of careful selection of the base and the solvent. The following reactions are representative examples ... [Pg.87]

This isomerization, which must proceed through a 1,2,3-trienylanine, is not "contra-thermodynamic", since with a catalytic amount of potassium tert.-butoxide the same result is obtained. Enyne ethers, H2C=CH-CsC-0R, undergo a similar conversion into HCeC-CH=CH-OR upon interaction with alkali metal amides in liquid NH3, followed by hydrolysis . Enyne sulphides, H2C=CH-CsC-SR, and the hydrocarbons H2C=CH-CsC-R (R = or phenyl) give only tars or polymeric products under... [Pg.89]

Spherical, pentagonal dodecahedrane is the thermodynamically most stable CjoHjo-polycycloalkane. It is the so-called CjjHjo stabilomer . It should therefore be available by thermod5mamically controlled, e.g. acid-catalyzed, isomerization of less stable C24H20-isomers. Experiments along this line, e.g. treatment of the basketene photo-dimer with Lewis... [Pg.334]

The first HCN addition (eq. 3) occurs at practical rates above 70°C under sufficient pressure to keep butadiene condensed in solution and produces the 1,4- and 1,2-addition products (3-pentenenitrile [4635-87-4] 3PN, and 2-meth5i-3-butenenitrile [16529-56-9] 2M3BN) in a 2 to 1 ratio. Fortunately, thermodynamics favors 3PN (about 20 1) and 2M3BN may be isomerized to 3PN (eq. 4) in the presence of a nickel catalyst. [Pg.221]

Long-chain primary alcohols, eg, triacontanol, can be prepared by the hydroboration, isomerization, and oxidation of the corresponding internal alkenes (437). The less thermodynamically stable stereoisomer can be transformed into the more stable one by heating, eg, i j -into /ra/ j -myrtanjiborane (204). [Pg.321]

Some processes use only one reactor (57) or a combination of liquid- and vapor-phase reactors (58). The goal of these schemes is to reduce energy consumption and capital cost. Hydrogenation normally is carried out at 2—3 MPa (20—30 atm). Temperature is maintained at 300—350°C to meet a typical specification of less than 500 ppm benzene in the product at higher temperatures, thermodynamic equiUbrium shifts to favor benzene and the benzene specification is impossible to attain. Also, at higher temperatures, isomerization of cyclohexane to methylcyclopentane occurs typically there is a 200 ppm specification limit on methylcyclopentane content. [Pg.408]

An excess of crotonaldehyde or aUphatic, ahcyhc, and aromatic hydrocarbons and their derivatives is used as a solvent to produce compounds of molecular weights of 1000—5000 (25—28). After removal of unreacted components and solvent, the adduct referred to as polyester is decomposed in acidic media or by pyrolysis (29—36). Proper operation of acidic decomposition can give high yields of pure /n j ,/n7 j -2,4-hexadienoic acid, whereas the pyrolysis gives a mixture of isomers that must be converted to the pure trans,trans form. The thermal decomposition is carried out in the presence of alkaU or amine catalysts. A simultaneous codistillation of the sorbic acid as it forms and the component used as the solvent can simplify the process scheme. The catalyst remains in the reaction batch. Suitable solvents and entraining agents include most inert Hquids that bod at 200—300°C, eg, aUphatic hydrocarbons. When the polyester is spHt thermally at 170—180°C and the sorbic acid is distilled direcdy with the solvent, production and purification can be combined in a single step. The solvent can be reused after removal of the sorbic acid (34). The isomeric mixture can be converted to the thermodynamically more stable trans,trans form in the presence of iodine, alkaU, or sulfuric or hydrochloric acid (37,38). [Pg.283]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

Isomerization. Isomerization of any of the butylene isomers to increase supply of another isomer is not practiced commercially. However, their isomerization has been studied extensively because formation and isomerization accompany many refinery processes maximization of 2-butene content maximizes octane number when isobutane is alkylated with butene streams using HF as catalyst and isomerization of high concentrations of 1-butene to 2-butene in mixtures with isobutylene could simplify subsequent separations (22). One plant (Phillips) is now being operated for this latter purpose (23,24). The general topic of isomerization has been covered in detail (25—27). Isomer distribution at thermodynamic equiUbrium in the range 300—1000 Kis summarized in Table 4 (25). [Pg.364]

Azoles containing a free NH group react comparatively readily with acyl halides. N-Acyl-pyrazoles, -imidazoles, etc. can be prepared by reaction sequences of either type (66) -> (67) or type (70)->(71) or (72). Such reactions have been carried out with benzoyl halides, sulfonyl halides, isocyanates, isothiocyanates and chloroformates. Reactions occur under Schotten-Baumann conditions or in inert solvents. When two isomeric products could result, only the thermodynamically stable one is usually obtained because the acylation reactions are reversible and the products interconvert readily. Thus benzotriazole forms 1-acyl derivatives (99) which preserve the Kekule resonance of the benzene ring and are therefore more stable than the isomeric 2-acyl derivatives. Acylation of pyrazoles also usually gives the more stable isomer as the sole product (66AHCi6)347). The imidazole-catalyzed hydrolysis of esters can be classified as an electrophilic attack on the multiply bonded imidazole nitrogen. [Pg.54]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

The fact that the isomeric structure of azolides is thermodynamically controlled has been used by Olofson and Kendall to prepare 1-alkylazoles regioselectively (70JOC2246). An asymmetric pyrazole yields two alkylated derivatives (Scheme 21 see Section 4.04.2.1.3 (viii)), but the alkylation with a powerful alkylating agent of the acetylated derivative leads to the less abundant isomer via the salt (249), which is too unstable to be isolated. [Pg.232]

Tautomerism has been discussed in Section 4.04.1.5.2. It concerns prototropic tautomerism and the decreasing order of stability is (hydrazone) >A (azo)> A (enehydrazine). The isomerization A -> A occurs via a A -pyrazoline (65BSF769). Pyrazolidones and amino-A -pyrazolines exist as such. The only example of non-prototropic tautomerism deals with the isomerization (403) —> (404) (74CJC3474). This intramolecular process is another example (Section 4.04.1.5) of the thermodynamic analogy between prototropy and metallotropy. [Pg.254]

Nitrile ylides derived from the photolysis of 1-azirines have also been found to undergo a novel intramolecular 1,1-cycloaddition reaction (75JA3862). Irradiation of (65) gave a 1 1 mixture of azabicyclohexenes (67) and (68). On further irradiation (67) was quantitatively isomerized to (68). Photolysis of (65) in the presence of excess dimethyl acetylenedicar-boxylate resulted in the 1,3-dipolar trapping of the normal nitrile ylide. Under these conditions, the formation of azabicyclohexenes (67) and (68) was entirely suppressed. The photoreaction of the closely related methyl-substituted azirine (65b) gave azabicyclohexene (68b) as the primary photoproduct. The formation of the thermodynamically less favored endo isomer, i.e. (68b), corresponds to a complete inversion of stereochemistry about the TT-system in the cycloaddition process. [Pg.58]


See other pages where Isomerization thermodynamics is mentioned: [Pg.10]    [Pg.71]    [Pg.158]    [Pg.486]    [Pg.634]    [Pg.651]    [Pg.10]    [Pg.196]    [Pg.10]    [Pg.71]    [Pg.158]    [Pg.486]    [Pg.634]    [Pg.651]    [Pg.10]    [Pg.196]    [Pg.102]    [Pg.18]    [Pg.407]    [Pg.552]    [Pg.552]    [Pg.280]    [Pg.209]    [Pg.160]    [Pg.438]    [Pg.439]    [Pg.119]    [Pg.242]    [Pg.365]    [Pg.6]    [Pg.62]    [Pg.46]    [Pg.195]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.16 , Pg.17 ]




SEARCH



© 2024 chempedia.info