Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimerization, photo

Andreasson, J., A. Kyrychenko, J. Martensson, and B. Albinsson (2002). Temperature and viscosity dependence of the triplet energy transfer process in porphyrin dimers. Photo chem. Photobiol. Sci. 1(2), 111-119. [Pg.713]

Dilution s. High dilution Dimerization (s. a. Coupling, Cyclo-dimerization, Photo-)... [Pg.252]

Spherical, pentagonal dodecahedrane is the thermodynamically most stable CjoHjo-polycycloalkane. It is the so-called CjjHjo stabilomer . It should therefore be available by thermod5mamically controlled, e.g. acid-catalyzed, isomerization of less stable C24H20-isomers. Experiments along this line, e.g. treatment of the basketene photo-dimer with Lewis... [Pg.334]

The low solubility of fullerene (Ceo) in common organic solvents such as THE, MeCN and DCM interferes with its functionalization, which is a key step for its synthetic applications. Solid state photochemistry is a powerful strategy for overcoming this difficulty. Thus a 1 1 mixture of Cgo and 9-methylanthra-cene (Equation 4.10, R = Me) exposed to a high-pressure mercury lamp gives the adduct 72 (R = Me) with 68% conversion [51]. No 9-methylanthracene dimers were detected. Anthracene does not react with Ceo under these conditions this has been correlated to its ionization potential which is lower than that of the 9-methyl derivative. This suggests that the Diels-Alder reaction proceeds via photo-induced electron transfer from 9-methylanthracene to the triplet excited state of Ceo-... [Pg.168]

N3-coordination by monomeric and dimeric Zn2+-cyclen derivatives has also been shown to both inhibit the photo [2+2] cycloaddition of thymidilyl(3 -5 )thymidine, d(TpT), and to accelerate the photosplitting process of the [T-cis,syn-T] dimer (78% after 1 h of UV exposure) (38). [Pg.94]

Scheme 1 UV-light induced formation of the two major photo lesions in DNA. T=T cyclobutane pyrimidine dimer. (6-4)-photo product (6-4)-lesion, formed after ring opening of an oxetane intermediate, which is the product of a Paterno-Buchi reaction... Scheme 1 UV-light induced formation of the two major photo lesions in DNA. T=T cyclobutane pyrimidine dimer. (6-4)-photo product (6-4)-lesion, formed after ring opening of an oxetane intermediate, which is the product of a Paterno-Buchi reaction...
Flavin-cyclobutane pyrimidine dimer and flavin-oxetane model compounds like 1-3 showed for the first time that a reduced and deprotonated flavin is a strong photo-reductant even outside a protein environment, able to transfer an extra electron to cyclobutane pyrimidine dimers and oxetanes. There then spontaneously perform either a [2n+2n cycloreversion or a retro-Paternd-Buchi reaction. In this sense, the model compounds mimic the electron transfer driven DNA repair process of CPD- and (6-4)-photolyases. [Pg.212]

The photodimerization of simple isolated olefinic bonds is rarely observed because of the absorption of these compounds in the high-energy or vacuum-ultraviolet region. One case reported is that of the photo-dimerization of 2-butene.<2) Irradiation of liquid cw-2-butene with light from a cadmium (A = 229, 227, 214 nm) or zinc (A = 214 nm) lamp was reported to lead to dimers (1) and (2) ... [Pg.219]

The following mechanism has been proposed to account for this photo-dimerization<38) ... [Pg.224]

As with 2-cyclopentenone, the ratio (70) (71) varies with the molar concentration of the enone, the head-to-head dimer (71) becoming increasingly important at higher concentrations/133 This reaction is efficiently sensitized by acetophenone, benzophenone, thioxanthone, and naphthalene. The same enone concentration effect was observed in the sensitized photo-dimerization as in the direct photolysis. Similarly, quenching of the dimerization by piperylene was not accompanied by a change in dimer ratio. Systematic... [Pg.237]

The stereospecificity of these reactions is surprising in light of the large energies absorbpd by these molecules. Indeed, the major photochemical product of these photolyses was the alternate olefin isomer (1-butene was also observed). These results indicate that free rotation about the photo-excited double bond does not occur in those molecules that dimerize. This suggests the participation of ground state complexes or excimers in the photodimerization. This view is supported by the observations that dilution of cw-2-butene with neopentane (1 1) decreased the yield of dimers and a 1 4 dilution almost completely suppressed dimerization. [Pg.518]

The oxygen molecule, a paramagnetic species with an unpaired electron on each atom, has already been referred to as biradical, albeit an unreactive one. The photochemical excitation of an anthracene to a biradical, or to something rather like one, has also been mentioned (p. 331) if this excitation is carried out in the absence of air or oxygen, instead of the trans-annular peroxide—(104)—a photo-dimer (130) is obtained ... [Pg.337]

There is always interest in the photochemistry of the pyrimidine nucleic acid bases and related simple pyrimidinones, due to its importance in genetic mutation. In addition to damaging DNA, photo-induced reactions may also repair the damage, as in the reduction, by FADH, of the thymine glycol 64 back to thymine <06JACS10934>. Another report related to repair of DNA involved a model study, by means of the linked dimer 65, of the involvement of tryptophan in the electron-transfer leading to reversion of thymine oxetane adducts <06OBC291>. [Pg.402]

It should be added that ethenedithione (115) can also be prepared by an electric discharge in a mixture of CS2 and argon.147 As in the photo-dimerization of CS it can be assumed that in both cases one CS molecule is excited to the triplet state and then adds another singlet CS to form triplet C2S2 T-115. [Pg.143]


See other pages where Dimerization, photo is mentioned: [Pg.274]    [Pg.274]    [Pg.253]    [Pg.291]    [Pg.126]    [Pg.199]    [Pg.1217]    [Pg.1218]    [Pg.137]    [Pg.830]    [Pg.407]    [Pg.254]    [Pg.305]    [Pg.1037]    [Pg.48]    [Pg.167]    [Pg.295]    [Pg.306]    [Pg.117]    [Pg.311]    [Pg.42]    [Pg.52]    [Pg.166]    [Pg.212]    [Pg.782]    [Pg.310]    [Pg.154]    [Pg.46]    [Pg.118]    [Pg.278]    [Pg.366]    [Pg.21]   


SEARCH



© 2024 chempedia.info