Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Presence of a Catalyst

The presence of a catalyst is denoted over the arrow in a chemical equation, since it does not affect the overall reaction. [Pg.49]

An increase in temperature increases the number of molecules, exceeding the activation energy. [Pg.49]

When temperature is increased by 20 °C, the fraction of molecules with very high energies increases. Thus, the number of molecules exceeding activation energy increases and reaction occurs in a shorter time. [Pg.49]

the fraction of effective collisions increases. This is the major factor causing a reaction rate to increase with temperature. [Pg.49]

A catalyst is a substance that increases the rate of a reaction without being consumed in reactions. It changes the reaction path by decreasing the activation energy. [Pg.49]

Enzymes are biological versions of catalysts and are so ubiquitous that we need to [Pg.150]

We study the action of catalysts (a substance that accelerates a reaction without itself appearing in the overall chemical equation), especially enzymes, in Chapter 8 and at this stage do not need to know in detail how they work other than that they provide an alternative, faster route from reactants to products. Although the new route from reactants to products is faster, the initial reactants and the final products are the same. The quantity is defined as the difference of the standard molar [Pg.150]

Gibbs energies of the reactants and products, so it is independent of the path linking the two. It follows that an alternative pathway between reactants and products leaves and therefore K unchanged. That is, the presence of a catalyst does not [Pg.150]


Another test is the total oxygen demand (TOD) test, which oxidizes the waste in the presence of a catalyst at 900°C in a stream of air. Under these harsh conditions, all the carbon is oxidized to CO2. The oxygen demand is calculated from the difference in oxygen content of the air before and after oxidation. The resulting value of TOD... [Pg.308]

The o- and p-isomers are manufactured by the direct chlorination of benzene in the presence of iron as a catalyst, the resulting mixture being separated by fractional distillation. The w-isomer may be obtained by isomerization of the 0- or p-compound in the presence of a catalyst. [Pg.134]

CH2C1 CH2C1. Colourless liquid with an odour like that of chloroform b.p. 84 C. It is an excellent solvent for fats and waxes. Was first known as oil of Dutch chemists . Manufactured by the vapour- or liquid-phase reaction of ethene and chlorine in the presence of a catalyst. It reacts with anhydrous ethano-ales to give ethylene glycol diethanoate and with ammonia to give elhylenediamine, these reactions being employed for the manufacture of these chemicals. It burns only with difficulty and is not decomposed by boiling water. [Pg.134]

PPha, pyridine) organic groups (olefines, aromatic derivatives) and also form other derivatives, e.g. halides, hydrides, sulphides, metal cluster compounds Compounds containing clusters of metal atoms linked together by covalent (or co-ordinate) bands, metaldehyde, (C2H40) ( = 4 or 6). A solid crystalline substance, sublimes without melting at I12 1I5" C stable when pure it is readily formed when elhanal is left in the presence of a catalyst at low temperatures, but has unpredictable stability and will revert to the monomer, ft is used for slug control and as a fuel. [Pg.257]

C, b.p. 156 C. The most important of the terpene hydrocarbons. It is found in most essential oils derived from the Coniferae, and is the main constituent of turpentine oil. Contains two asymmetric carbon atoms. The (- -)-form is easily obtained in a pure state by fractionation of Greek turpentine oil, of which it constitutes 95%. Pinene may be separated from turpentine oil in the form of its crystalline nitrosochloride, CioHigClNO, from which the ( + )-form may be recovered by boiling with aniline in alcoholic solution. When heated under pressure at 250-270 C, a-pinene is converted into dipentene. It can be reduced by hydrogen in the presence of a catalyst to form... [Pg.314]

The sweetening operation consists of converting the mercaptans to disulfides by air oxidation in the presence of a catalyst in a caustic environment. [Pg.404]

The alkali metal tetrahydridoborates are salts those of sodium and potassium are stable in aqueous solution, but yield hydrogen in the presence of a catalyst. They are excellent reducing agents, reducing for example ion(III) to iron(II). and silver ions to the metal their reducing power is used in organic chemistry, for example to reduce aldehydes to alcohols. They can undergo metathetic reactions to produce other borohydrides, for example... [Pg.147]

Aldehydes condense with alcohols in the presence of a catalyst (1-2-5 per... [Pg.319]

The conversion of an aromatic diazonium compound into the corresponding arsonic acid by treatment with sodium arsenite in the presence of a catalyst, such as copper or a copper salt, is called the Bart reaction. A modification of the reaction employs the more stable diazonium fluoborate in place of the diazonium chlorid.i. This is illustrated by the preparation of />-nitrophenylarsonic acid ... [Pg.597]

An important general method of preparing indoles, known as the Fischer Indole synthesis, consists in heating the phenylhydrazone of an aldehyde, ketone or keto-acld in the presence of a catalyst such as zinc chloride, hydrochloric acid or glacial acetic acid. Thus acrtophenone phenylhydrazone (I) gives 2-phenyllndole (I V). The synthesis involves an intramolecular condensation with the elimination of ammonia. The following is a plausible mechanism of the reaction ... [Pg.851]

Reactions with Ammonia and Amines. Acetaldehyde readily adds ammonia to form acetaldehyde—ammonia. Diethyl amine [109-87-7] is obtained when acetaldehyde is added to a saturated aqueous or alcohoHc solution of ammonia and the mixture is heated to 50—75°C in the presence of a nickel catalyst and hydrogen at 1.2 MPa (12 atm). Pyridine [110-86-1] and pyridine derivatives are made from paraldehyde and aqueous ammonia in the presence of a catalyst at elevated temperatures (62) acetaldehyde may also be used but the yields of pyridine are generally lower than when paraldehyde is the starting material. The vapor-phase reaction of formaldehyde, acetaldehyde, and ammonia at 360°C over oxide catalyst was studied a 49% yield of pyridine and picolines was obtained using an activated siHca—alumina catalyst (63). Brown polymers result when acetaldehyde reacts with ammonia or amines at a pH of 6—7 and temperature of 3—25°C (64). Primary amines and acetaldehyde condense to give Schiff bases CH2CH=NR. The Schiff base reverts to the starting materials in the presence of acids. [Pg.50]

Acetic anhydride adds to acetaldehyde in the presence of dilute acid to form ethyUdene diacetate [542-10-9], boron fluoride also catalyzes the reaction (78). Ethyfldene diacetate decomposes to the anhydride and aldehyde at temperatures of 220—268°C and initial pressures of 14.6—21.3 kPa (110—160 mm Hg) (79), or upon heating to 150°C in the presence of a zinc chloride catalyst (80). Acetone (qv) [67-64-1] has been prepared in 90% yield by heating an aqueous solution of acetaldehyde to 410°C in the presence of a catalyst (81). Active methylene groups condense acetaldehyde. The reaction of isobutfyene/715-11-7] and aqueous solutions of acetaldehyde in the presence of 1—2% sulfuric acid yields alkyl-y -dioxanes 2,4,4,6-tetramethyl-y -dioxane [5182-37-6] is produced in yields up to 90% (82). [Pg.51]

Chloroacetate esters are usually made by removing water from a mixture of chloroacetic acid and the corresponding alcohol. Reaction of alcohol with chloroacetyl chloride is an anhydrous process which Hberates HCl. Chloroacetic acid will react with olefins in the presence of a catalyst to yield chloroacetate esters. Dichloroacetic and trichloroacetic acid esters are also known. These esters are usehil in synthesis. They are more reactive than the parent acids. Ethyl chloroacetate can be converted to sodium fluoroacetate by reaction with potassium fluoride (see Fluorine compounds, organic). Both methyl and ethyl chloroacetate are used as agricultural and pharmaceutical intermediates, specialty solvents, flavors, and fragrances. Methyl chloroacetate and P ionone undergo a Dar2ens reaction to form an intermediate in the synthesis of Vitamin A. Reaction of methyl chloroacetate with ammonia produces chloroacetamide [79-07-2] C2H ClNO (53). [Pg.90]

Analogously, aldehydes react with ammonia [7664-41-7] or primary amines to form Schiff bases. Subsequent reduction produces a new amine. The addition of hydrogen cyanide [74-90-8] sodium bisulfite [7631-90-5] amines, alcohols, or thiols to the carbonyl group usually requires the presence of a catalyst to assist in reaching the desired equilibrium product. [Pg.471]

Polydextrose (Pfizer) is prepared by high temperature polymerization of glucose in the presence of a catalyst. It is a water-soluble, amorphous soUd used primarily as a hulking agent (52). Dried fmit, including pmnes, and dried plum, date, and grape juice is used for similar appUcations (53). [Pg.119]

Raw Material. PVA is synthesized from acetjiene [74-86-2] or ethylene [74-85-1] by reaction with acetic acid (and oxygen in the case of ethylene), in the presence of a catalyst such as zinc acetate, to form vinyl acetate [108-05-4] which is then polymerized in methanol. The polymer obtained is subjected to methanolysis with sodium hydroxide, whereby PVA precipitates from the methanol solution. [Pg.337]

Triaryl phosphates are produced from the corresponding phenols (usually mixtures) by reaction with phosphoms oxychloride, usually in the presence of a catalyst (94—96). They are subsequently distilled and usually washed with aqueous bases to the desired level of purity. Tricresyl phosphate was originally made from petroleum-derived or coal-tar-derived cresyflc acids, ie, cresols, variously admixed with phenol and xylenols. Discovery of the toxicity of the ortho-cresyl isomers led manufacturers to select cresols having very Httle ortho-isomer. [Pg.478]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]


See other pages where The Presence of a Catalyst is mentioned: [Pg.35]    [Pg.10]    [Pg.94]    [Pg.96]    [Pg.118]    [Pg.129]    [Pg.164]    [Pg.165]    [Pg.168]    [Pg.238]    [Pg.293]    [Pg.293]    [Pg.296]    [Pg.330]    [Pg.343]    [Pg.29]    [Pg.196]    [Pg.347]    [Pg.141]    [Pg.451]    [Pg.534]    [Pg.216]    [Pg.654]    [Pg.360]    [Pg.374]    [Pg.258]    [Pg.385]    [Pg.436]    [Pg.551]    [Pg.208]   


SEARCH



© 2024 chempedia.info