Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The oxide film

The thickness of the oxide layer formed on pure magnesium in ambient conditions was calculated by McIntyre and Chen (7) using X-ray photoelectron spectroscopy (XPS). After exposure for only 10 s the oxide layer was measured to be 2.2 0.3 nm (c. seven monolayers of MgO). The oxide layer was found to increase in thickness slowly and linearly with the logarithm of exposure time during a test period of 10 month s exposure to laboratory atmosphere. Hydration by absorbed water molecules contributed to the measured thickening of the air-formed film through hydroxide formation. [Pg.272]


Gundlach K H and Kadlech J 1974 The influence of the oxide film on the current in AI-AI oxide-fatty acid monolayer-metal functions Chem. Phys. Lett. 25 293-5... [Pg.2631]

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

To illustrate some of the different approaches, let us consider passive films grown on Fe-Cr alloys. It has been established since 1911 [72] that an increase of Cr in the alloy increases the stability of the oxide film against dissolution. [Pg.2725]

The percolation argument is based on the idea that with an increasing Cr content an insoluble interlinked cliromium oxide network can fonn which is also protective by embedding the otherwise soluble iron oxide species. As the tlireshold composition for a high stability of the oxide film is strongly influenced by solution chemistry and is different for different dissolution reactions [73], a comprehensive model, however, cannot be based solely on geometrical considerations but has in addition to consider the dissolution chemistry in a concrete way. [Pg.2725]

Sheet aluminium can be given a colour by a similar process. The aluminium is first made the anode in a bath of chromic acid (p. 377) when, instead of oxygen being evolved, the aluminium becomes coated with a very adherent film of aluminium oxide which is very adsorbent. If a dye is added to the bath the oxide film is coloured, this colour being incorporated in a film which also makes the remaining aluminium resistant to corrosion. This process is called anodising aluminium. [Pg.151]

Sometimes the formation of oxide films on the metal surface binders efficient ECM, and leads to poor surface finish. Eor example, the ECM of titanium is rendered difficult in chloride and nitrate electrolytes because the oxide film formed is so passive. Even when higher (eg, ca 50 V) voltage is apphed, to break the oxide film, its dismption is so nonuniform that deep grain boundary attack of the metal surface occurs. [Pg.308]

Inasmuch as friction conditions determine the flow characteristics of a powder, coarser powder particles of spherical shape flow fastest and powder particles of identical diameter but irregular shape flow more slowly. Finer particles may start to flow, but stop after a short time. Tapping is needed in order to start the flow again. Very fine powders (fine powder particles to coarser ones may increase the apparent density, but usually decreases the flow quality. Metal powders having a thin oxide film may flow well. When the oxide film is removed and the friction between the particles therefore increases, these powders may flow poorly. [Pg.181]

Copper and Copper-Containing Alloys. Either sulfuric or hydrochloric acid may be used effectively to remove the oxide film on copper (qv) or copper-containing alloys. Mixtures of chromic and sulfuric acids not only remove oxides, but also brighten the metal surface. However, health and safety issues related to chromium(VT) make chromic acid less than desirable. [Pg.226]

Optical Properties. The index of refraction and extinction coefficient of vacuum-deposited aluminum films have been reported (8,9) as have the total reflectance at various wavelengths and emissivity at various temperatures (10). Emissivity increases significantly as the thickness of the oxide film on aluminum increases and can be 70—80% for oxide films of 100 nm. [Pg.94]

Aluminum and Hydrogen. Hydrogen [1333-74-0] is the only gas known to be appreciably soluble in soHd or molten aluminum. Hydrogen can be introduced into Hquid aluminum from reaction with moisture present in the furnace atmosphere or the refractories, or with moisture entrapped in the oxide film of the soHd aluminum before melting. The solubiUty of hydrogen in molten and soHd aluminum is shown in Table 6. [Pg.94]

Atmospheric corrosion is electrochemical ia nature and depends on the flow of current between anodic and cathodic areas. The resulting attack is generally localized to particular features of the metallurgical stmcture. Features that contribute to differences ia potential iaclude the iatermetaUic particles and the electrode potentials of the matrix. The electrode potentials of some soHd solutions and iatermetaUic particles are shown ia Table 26. Iron and sUicon impurities ia commercially pure aluminum form iatermetaUic coastitueat particles that are cathodic to alumiaum. Because the oxide film over these coastitueats may be weak, they can promote electrochemical attack of the surrounding aluminum matrix. The superior resistance to corrosion of high purity aluminum is attributed to the small number of these constituents. [Pg.125]

Transparent electroconductive coatings of stannic oxide are deposited on nonconductive substrates for electrical and strengthening appHcations. However, the agents used to deposit the oxide film are actually stannic chloride. More recently, some organotin compounds have been employed. [Pg.65]

An especially insidious type of corrosion is localized corrosion (1—3,5) which occurs at distinct sites on the surface of a metal while the remainder of the metal is either not attacked or attacked much more slowly. Localized corrosion is usually seen on metals that are passivated, ie, protected from corrosion by oxide films, and occurs as a result of the breakdown of the oxide film. Generally the oxide film breakdown requires the presence of an aggressive anion, the most common of which is chloride. Localized corrosion can cause considerable damage to a metal stmcture without the metal exhibiting any appreciable loss in weight. Localized corrosion occurs on a number of technologically important materials such as stainless steels, nickel-base alloys, aluminum, titanium, and copper (see Aluminumand ALUMINUM ALLOYS Nickel AND nickel alloys Steel and Titaniumand titanium alloys). [Pg.274]

Alloys having varying degrees of corrosion resistance have been developed in response to various environmental needs. At the lower end of the alloying scale are the low alloy steels. These are kon-base alloys containing from 0.5—3.0 wt % Ni, Cr, Mo, or Cu and controlled amounts of P, N, and S. The exact composition varies with the manufacturer. The corrosion resistance of the alloy is based on the protective nature of the surface film, which in turn is based on the physical and chemical properties of the oxide film. As a rule, this alloying reduces the rate of corrosion by 50% over the fkst few years of atmosphere exposure. Low alloy steels have been used outdoors with protection. [Pg.282]

Zinc is attacked at high pH. However, in weakly alkaline solutions near room temperature, corrosion is actually very slight, being less than 1 mil/y (0.0254 mm/y) at a pH of 12. The corrosion rate increases rapidly at higher pH, approaching 70 mil/y (1.8 mm/y) at a pH near 14. Just as in aluminum corrosion, protection is due primarily to a stable oxide film that forms spontaneously on exposure to water. High alkalinity dissolves the oxide film, leading to rapid attack. [Pg.187]

Clean the surface with a wire brush to loosen the oxide film and then wipe it off with a soft cloth. The use of a wire brush serves a dual purpose first, scraping and removing the oxide film, and secondly, providing the surface with a moderate knurling (roughness), which helps to make a better surface-to-surface contact and, in turn, a better joint. [Pg.369]

This process will clearly slow down as the oxide film thickens and hence dx k... [Pg.253]

The kinetics of the processes of oxidation of these complex sulphides have not been established quantitively, but the rate of advance of the oxides into sulphide particles of inegular shapes were always linear. This suggests tlrat the oxide films were rupmred during growth thus permitting the gas phase to have relatively unimpeded access to tire sulphide-oxide interface in all cases. [Pg.275]

The important thing about the oxide film is that it acts as a barrier which keeps the oxygen and iron atoms apart and cuts down the rate at which these atoms react to form more iron oxide. Aluminium, and most other materials, form oxide barrier layers in just the same sort of way - but the oxide layer on aluminium is a much more effective barrier than the oxide film on iron is. [Pg.213]

Because oxides are usually quite brittle at the temperatures encountered on a turbine blade surface, they can crack, especially when the temperature of the blade changes and differential thermal contraction and expansion stresses are set up between alloy and oxide. These can act as ideal nucleation centres for thermal fatigue cracks and, because oxide layers in nickel alloys are stuck well to the underlying alloy (they would be useless if they were not), the crack can spread into the alloy itself (Fig. 22.3). The properties of the oxide film are thus very important in affecting the fatigue properties of the whole component. [Pg.223]

Preferei tial attack can also occur at breaks in the oxide film (caused by abrasion), or at precipitated compounds in certain alloys (Fig. 23.11). [Pg.231]

We said in Chapter 21 that all metals except gold have a layer, no matter how thin, of metal oxide on their surfaces. Experimentally, it is found that for some metals the junction between the oxide films formed at asperity tips is weaker in shear than the metal on which it grew (Fig. 25.4). In this case, sliding of the surfaces will take place in the thin oxide layer, at a stress less than in the metal itself, and lead to a corresponding reduction in x to a value between 0.5 and 1.5. [Pg.244]

Even when solid surfaces are protected by oxide films and boundary lubricants, some solid-to-solid contact occurs at regions where the oxide film breaks down under... [Pg.246]

The extent of the corrosion depends on the amount of nickel and chromium in the alloy. The oxide films become porous and nonprotective, which increases the oxidation rate (accelerated oxidation). [Pg.421]

In XPS, chemical information is comparatively slowly acquired in a stepwise fashion along with the depth, with alternate cycles of sputtering and analysis. Examples of profiles through oxide films on pure iron and on Fe-12Cr-lMo alloy are shown in Fig. 2.9, in which the respective contributions from the metallic and oxide components of the iron and chromium spectra have been quantified [2.10]. In these examples the oxide films were only -5 nm thick on iron and -3 nm thick on the alloy. [Pg.19]

Although insulators other than aluminum oxide have been tried, aluminum is still used almost universally because it is easy to evaporate and forms a limiting oxide layer of high uniformity. To be restricted, therefore, to adsorption of molecules on aluminum oxide might seem like a disadvantage of the technique, but aluminum oxide is very important in many technical fields. Many catalysts are supported on alumina in various forms, as are sensors, and in addition the properties of the oxide film on aluminum metal are of the greatest interest in adhesion and protection. [Pg.85]

The corrosion resistance of unalloyed titanium in hydrochloric or sulfuric acids can be increased significantly by anodic protection, which maintains the oxide film so that the corrosion will be negligible even in severely reducing conditions. [Pg.96]

It is widely used by the electronics industry in the manufacture of capacitors, where the oxide film is an efficient insulator, and as a filament or filament support. Indeed, it was for a while widely used to replace carbon as the filament in incandescent light bulbs but, by about 1911, was, itself superseded by tungsten. [Pg.978]


See other pages where The oxide film is mentioned: [Pg.440]    [Pg.62]    [Pg.309]    [Pg.313]    [Pg.186]    [Pg.226]    [Pg.226]    [Pg.126]    [Pg.126]    [Pg.44]    [Pg.331]    [Pg.331]    [Pg.331]    [Pg.104]    [Pg.228]    [Pg.146]    [Pg.217]    [Pg.233]    [Pg.247]    [Pg.215]    [Pg.215]    [Pg.266]    [Pg.400]   


SEARCH



Outer Hydrous Layer on the Passive Oxide Film

Oxidation films

Oxide films, on the metal surface

The Oxide Film—A Protective Barrier

© 2024 chempedia.info