Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Number of Ions

One can write acid-base equilibrium constants for the species in the inner compact layer and ion pair association constants for the outer compact layer. In these constants, the concentration or activity of an ion is related to that in the bulk by a term e p(-erp/kT), where yp is the potential appropriate to the layer [25]. The charge density in both layers is given by the algebraic sum of the ions present per unit area, which is related to the number of ions removed from solution by, for example, a pH titration. If the capacity of the layers can be estimated, one has a relationship between the charge density and potential and thence to the experimentally measurable zeta potential [26]. [Pg.178]

For an electrolyte solution containing both anions and cations, with the tennmal velocity of the cations being and the number of ions of charge z Cq per unit volume being Et, the product corresponds just... [Pg.570]

Much of the energy deposited in a sample by a laser pulse or beam ablates as neutral material and not ions. Ordinarily, the neutral substances are simply pumped away, and the ions are analyzed by the mass spectrometer. To increase the number of ions formed, there is often a second ion source to produce ions from the neutral materials, thereby enhancing the total ion yield. This secondary or additional mode of ionization can be effected by electrons (electron ionization, El), reagent gases (chemical ionization. Cl), a plasma torch, or even a second laser pulse. The additional ionization is often organized as a pulse (electrons, reagent gas, or laser) that follows very shortly after the... [Pg.10]

The ion current resulting from collection of the mass-separated ions provides a measure of the numbers of ions at each m/z value (the ion abundances). Note that for this ionization method, all ions have only a single positive charge, z = 1, so that m/z = m, which means that masses are obtained directly from the measured m/z values. Thus, after the thermal ionization process, m/z values and abundances of ions are measured. The accurate measurement of relative ion abundances provides highly accurate isotope ratios. This aspect is developed more fully below. [Pg.46]

Therefore, the ratio of the number of ions to the number of neutrals desorbing from a heated filament depends not only on the absolute temperature but also on the actual surface coverage of ions and neutrals on the filament (C, C ) and crucially on the difference between the ionization energy and work function terms, I and (j). This effect is explored in greater detail in the following illustrations. [Pg.49]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

This chapter should be read in conjunction with Chapter 6, Coronas, Plasmas, and Arcs. A plasma is defined as a gaseous phase containing neutral molecules, ions, and electrons. The numbers of ions and electrons are usually almost equal. In a plasma torch, the plasma is normally formed in a monatomic gas such as argon flowing between two concentric quartz tubes (Figure 14.1). [Pg.87]

Ions in a TOF analyzer are temporally separated according to mass. Thus, at the detector all ions of any one mass arrive at one particular time, and all ions of other masses arrive at a different times. Apart from measuring times of arrival, the TDC device must be able to measure the numbers of ions at any one m/z value to obtain ion abundances. Generally, in TOF instruments, many pulses of ions are sent to the detector per second. It is not unusual to record 30,000 spectra per minute. Of course, each spectmm contains few ions, and a final mass spectrum requires addition of all 30,000 spectra to obtain a representative result. [Pg.220]

A mass spectrum is a chart of ion abundances versus m/z values. It is shown above that the TDC measures ion arrival times, which are converted directly into m/z values. Notionally, the number of ions arriving at the detector at any one m/z value is equal to the number of events recorded (one... [Pg.223]

A mass spectrum consists of peaks corresponding to ions. The position of a peak on the x-axis is proportional to its mass (strictly, its m/z value), while the height of the peak on the y-axis gives the number of ions (abundances) at a particular m/z. The ions giving rise to the spectrum are formed in an ion source and are passed through an analyzer for measurement of m/z and into a detector for measurement of abundance (Figure 32.1). [Pg.225]

Schematic diagram of a mass spectrometer. After insertion of a sampie (A), it is ionized, the ions are separated according to m/z value, and the numbers of ions (abundances) at each m/z value are plotted against m/z to give the mass spectrum of A. By studying the mass spectrum, A can be identified,... Schematic diagram of a mass spectrometer. After insertion of a sampie (A), it is ionized, the ions are separated according to m/z value, and the numbers of ions (abundances) at each m/z value are plotted against m/z to give the mass spectrum of A. By studying the mass spectrum, A can be identified,...
A mass spectrum consists of a series of peaks at different m/z values, with the height of the peak proportional to the number of ions. A partial mass spectrum is shown in Figure 44.3 and is seen to be an analog signal that varies as the peaks rise from and fall to the baseline. Between the peaks are relatively long intervals when there is only the baseline. As described above, the signal is first digitized. [Pg.317]

Thus, either the emitted light or the ions formed can be used to examine samples. For example, the mass spectrometric ionization technique of atmospheric-pressure chemical ionization (APCI) utilizes a corona discharge to enhance the number of ions formed. Carbon arc discharges have been used to generate ions of otherwise analytically intractable inorganic substances, with the ions being examined by mass spectrometry. [Pg.388]

As the name implies, thermospray uses heat to produce a spray of fine droplets. Plasmaspray does not produce the spray by using a plasma but, rather, the droplets are produced in a thermospray source and a plasma or corona is used afterward to increase the number of ions produced. [Pg.392]

To increase the number of ions, a plasma or corona discharge is produced in the mist issuing from the capillary. The electrical discharge induces more ionization in the neutrals accompanying the few thermospray ions. This enhancement increases the ionization of sample molecules and makes the technique much more sensitive to distinguish it from simple thermospray, it is called plasmaspray. [Pg.392]

A chart showing the number of ions (abundance) arriving at the collector and their respective m/z values is a mass spectrum. [Pg.405]

The magnitude of the current flow is proportional to the number of ions arriving at the array element per unit time. [Pg.409]

The strength of the ion current relates to the number of ions per second arriving at the collector plate, and a mass spectrum can be regarded as a snapshot of the current taken over a definite period of time. Because of the finite time taken to produce a mass spectrum, it is a record of the abundances of ions (often mistakenly called intensities of ions). [Pg.409]

This problem is known as dead time. To offset this effect, an algorithm is used to adjust the actual number of events into a true number of events. Since the numbers of ions represent ion abundances, the correction adjusts only abundances of ions before a mass spectrum is printed. [Pg.411]

Mass spectrometer. An instrument in which ions are analyzed according to their mass-to-charge ratio (m/z) and in which the number of ions is determined electrically (or via scintillator, vidicon, etc.). [Pg.429]

Resolution energy. A value derived from a peak showing the number of ions as a function of their translational energy. [Pg.437]

Ionization efficiency. The ratio of the number of ions formed to the number of electrons, photons, or particles that are used to produce ionization... [Pg.439]

Several additional terms related to the absorption of x-radiation require definition energy of a x-ray photon is properly represented in joules but more conveniently reported in eV fluence is the sum of the energy in a unit area intensity or flux is the fluence per unit time and the exposure is a measure of the number of ions produced in a mass of gas. The unit of exposure in medicine is the Rn ntgen, R, defined as the quantity of radiation required to produce 2.58 x C/kg of air. The absorbed dose for a tissue is a measure of energy dissipated per unit mass. The measure of absorbed dose most... [Pg.49]

Fig. 2. Schematic representation of relevant electrolyte transport through the renal tubule, depicting the osmolar gradient ia medullary iaterstitial fluid ia ywOj yW where represents active transport, —passive transport, hoth active and passive transport, and passive transport of H2O ia the presence of ADH, ia A, the cortex, and B, the medulla. An osmole equals a mole of solute divided by the number of ions formed per molecule of the solute. Thus one mole of sodium chloride is equivalent to two osmoles, ie, lAfNaCl = 2 Osm NaCl. ADH = antidiuretic hormone. Fig. 2. Schematic representation of relevant electrolyte transport through the renal tubule, depicting the osmolar gradient ia medullary iaterstitial fluid ia ywOj yW where represents active transport, —passive transport, hoth active and passive transport, and passive transport of H2O ia the presence of ADH, ia A, the cortex, and B, the medulla. An osmole equals a mole of solute divided by the number of ions formed per molecule of the solute. Thus one mole of sodium chloride is equivalent to two osmoles, ie, lAfNaCl = 2 Osm NaCl. ADH = antidiuretic hormone.

See other pages where The Number of Ions is mentioned: [Pg.230]    [Pg.484]    [Pg.570]    [Pg.1827]    [Pg.243]    [Pg.12]    [Pg.36]    [Pg.63]    [Pg.89]    [Pg.135]    [Pg.136]    [Pg.196]    [Pg.209]    [Pg.227]    [Pg.322]    [Pg.351]    [Pg.408]    [Pg.372]    [Pg.395]    [Pg.540]    [Pg.148]    [Pg.229]    [Pg.214]    [Pg.128]   


SEARCH



Number of ions

© 2024 chempedia.info