Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The chromatographic column

For capillary columns, numerous stationary phases are known [e.g. 39] but a few of them are very frequently utilized because of their ability to separate a variety of compounds. Such phases are [Pg.115]

Several other stationary phases made from different proportions of typical phases (methyl, phenyl, cyanopropyl), or from special compounds such as polytrifluropropyl-siloxane, or different columns such as PLOT (porous layer open tubular), columns coated with a modified graphitized carbon or with a silicone based polymer with chiral groups incorporated into the polymeric chain, columns coated with derivatized cyclodextrins (for the separation of chiral compounds), etc. are also utilized. [Pg.116]

The pyrolysate of cellulose contains both volatile and less volatile compounds. In order to identify as many as possible of these compounds it is necessary to apply different chromatographic conditions, one to monitor the volatile less polar compounds and the other to see the heavier more polar molecules generated during pyrolysis. A change in the choice of the chromatographic column is one possible way to obtain different information on a pyrolysate analysis. [Pg.118]


In their original theoretical model of chromatography, Martin and Synge treated the chromatographic column as though it consists of discrete sections at which partitioning of the solute between the stationary and mobile phases occurs. They called each section a theoretical plate and defined column efficiency in terms of the number of theoretical plates, N, or the height of a theoretical plate, H where... [Pg.553]

For the chromatographic column, flow of solution from the narrow inlet tube into the ionization/desolvation region is measured in terms of only a few microliters per minute. Under these circumstances, spraying becomes very easy by application of a high electrical potential of about 3-4 kV to the end of the nanotube. Similarly, spraying from any narrow capillary is also possible. The ions formed as part of the spraying process follow Z-shaped trajectories, as discussed below. [Pg.66]

Similarly, with molecules, their speed of movement through the chromatographic column depends on the time spent in the mobile phase compared with that in the stationary one and on the flow rate of the mobile phase. [Pg.248]

Because volatility is such an important factor in GC, the chromatographic column is contained in an oven, the temperature of which can be closely and reproducibly controlled. For very volatile... [Pg.248]

In the earliest interface, a continuous moving belt (loop) was used onto which the liquid emerging from the chromatographic column was placed as a succession of drops. As the belt moved along, the drops were heated at a low temperature to evaporate the solvent and leave behind any mixture components. Finally, the dried components were carried into the ion source, where they were heated strongly to volatilize them, after which they were ionized. [Pg.263]

On leaving the chromatographic column, the liquid flow passes along a narrow tube, into the FAB ion source, and then into the target zone of the fast atoms. [Pg.394]

A graph or chart of ion current (y-axis) vs. time (x-axis) is therefore a succession of peaks corresponding to components eluting from the chromatographic column. This chart is called a total km current (TIC) chromatogram. [Pg.394]

Column Tubing. The chromatographic column is contained in a tubing, the composition of which may have a dramatic effect on the separation process, because the sample components may also interact with the walls of the tube. Some of the materials used for columns are... [Pg.107]

The dimensionless ratio P/ corresponds to the ratio between the number of visible peaks, under the proposed chromatographic conditions, with the chromatographic column having a peak capacity . Differentiation of equation 5.6 with respect to a gives the maximum possible value of the ratio P/ and shows this to occur at a = 1 then, the maximum ratio P/ can be estimated by the following equation ... [Pg.114]

A six-port valve was first used to interface the SEC microcolumn to the CZE capillary in a valve-loop design. UV-VIS detection was employed in this experiment. The overall run time was 2 h, with the CZE runs requiring 9 min. As in the reverse phase HPLC-CZE technique, runs were overlapped in the second dimension to reduce the apparent run time. The main disadvantage of this yu-SEC-CZE method was the valve that was used for interfacing. The six-port valve contributed a substantial extracolumn volume, and required a fixed volume of 900 nL of effluent from the chromatographic column for each CZE run. The large fixed volume imposed restrictions on the operating conditions of both of the separation methods. Specifically, to fill the 900 nL volume, the SEC flow rate had to be far above the optimum level and therefore the SEC efficiency was decreased (22). [Pg.206]

The use of both sub- and supercritical fluids as eluents yields mobile phases with increased diffusivity and decreased viscosity relative to liquid eluents [23]. These properties enhance chromatographic efficiency and improve resolution. Higher efficiency in SFC shifts the optimum flowrate to higher values so that analysis time can be reduced without compromising resolution [12]. The low viscosity of the eluent also reduces the pressure-drop across the chromatographic column and facilitates the... [Pg.301]

Another method to determine infinite dilution activity coefficients (or the equivalent FFenry s law coefficients) is gas chromatography [FF, F2]. In this method, the chromatographic column is coated with the liquid solvent (e.g., the IL). The solute (the gas) is introduced with a carrier gas and the retention time of the solute is a measure of the strength of interaction (i.e., the infinite dilution activity coefficient, y7) of the solute in the liquid. For the steady-state method, given by [FF, F2] ... [Pg.85]

Determination of oxygen. The sample is weighed into a silver container which has been solvent-washed, dried at 400 °C and kept in a closed container to avoid oxidation. It is dropped into a reactor heated at 1060 °C, quantitative conversion of oxygen to carbon monoxide being achieved by a layer of nickel-coated carbon (see Note). The pyrolysis gases then flow into the chromatographic column (1 m long) of molecular sieves (5 x 10-8 cm) heated at 100 °C the CO is separated from N2, CH4, and H2, and is measured by a thermal conductivity detector. [Pg.248]

Finally, ion chromatography can be used to determine the a-sulfo fatty acid esters. The chromatographic column is a nonpolar poly sty rene/divinylbenzene column and the ion pair reagent is 0.005 M ammonia. In order to reduce the elution time, acetonitrile is added as a modifier with increasing concentration. This gradient technique makes it possible to separate simultaneously ester sulfonates and disalts by chain length. Determination is achieved by standards with defined chain length [107]. [Pg.493]

The chromatographic column has a dichotomy of purpose. During a separation, two processes ensue in the column, continuously, progressively and virtually independent of one another. Firstly, the individual solutes are moved apart as a result of the differing distribution coefficients of each component with respect to the stationary phase in the manner previously described. Secondly, having moved the individual components apart, the column is designed to constrain the natural dispersion of each solute band (i.e. the band... [Pg.15]

Bromocriptine 2 (0.65 g, 1 mmol) was dissolved in 100 ml of dry ethanol and 60 ml of tetrafluoroboric acid / diethylether complex (85 %) was added while stirring. After standing overnight at RT the solvent was evaporated and the raw product isolated by extraction in the system dichloromethane 12% ammonia in water and evaporated to the dry residue. This residue was applied to the chromatographic column (I.D. = 2 cm, lenght = 20 cm) packed with silicagel and eluted with dichloromethane / ethylacetate =1 1. The fractions containing 2 were evaporated to the dry residue and crystallized from alcohol. [Pg.88]

Solvent-property detector A detector which monitors a property of the HPLC mobile phase which is perturbed when an analyte elutes from the chromatographic column. [Pg.311]

Theoretical plate In plate theory, the chromatographic column is viewed as a series of narrow layers, known as theoretical plates, within each of which equilibration of the analyte between mobile and stationary phases occurs. [Pg.311]

Unrecognized shifts in the calibration of the columns will affect the raw data, which are in terms of elution time of the components of the specimen from the chromatographic columns. Use of log hydrodynamic volume allows the operator to correct for such... [Pg.26]


See other pages where The chromatographic column is mentioned: [Pg.568]    [Pg.583]    [Pg.101]    [Pg.246]    [Pg.248]    [Pg.255]    [Pg.256]    [Pg.258]    [Pg.262]    [Pg.265]    [Pg.266]    [Pg.277]    [Pg.279]    [Pg.324]    [Pg.106]    [Pg.106]    [Pg.106]    [Pg.107]    [Pg.108]    [Pg.111]    [Pg.767]    [Pg.21]    [Pg.227]    [Pg.112]    [Pg.207]    [Pg.809]    [Pg.218]    [Pg.241]    [Pg.15]    [Pg.89]    [Pg.89]    [Pg.24]   


SEARCH



Chromatographic column

© 2024 chempedia.info