Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Amphiphiles

Synthetic phospholipids mixtures were also shown to form lyotropic liquid crystals with interesting properties. For example ternary lipid mixtures comprising of two lipids, dioleoylphosphatidylcholine (DOPC), dioleoylglycerol (DOG), and cholesterol, of molar ratios 1 2 1 and 1 2 2, in excess water induced formation of three dimensional (3D) hexagonal mesophases [12], Other synthetic such as polyoxyethylene-10-oleyl ether [13] also can form LLC but since these structures were less studied and have less potential to serve as delivery vehicles they will not be discussed in this chapter. [Pg.358]


Surface Micelles. The possibility of forming clusters of molecules or micelles in monolayer films was first proposed by Langmuir [59]. The matter of surface micelles and the issue of equilibration has been the subject of considerable discussion [191,201,205-209]. Nevertheless, many ir-a isotherms exhibit nonhorizontal lines unexplained by equations of state or phase models. To address this, Israelachvili [210] developed a model for ir-u curves where the amphiphiles form surface micelles of N chains. The isotherm... [Pg.134]

Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice. Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice.
Chain models capture the basic elements of the amphiphilic behaviour by retaining details of the molecular architecture. Ben-Shaul et aJ [ ] and others [ ] explored the organization of tlie hydrophobic portion in lipid micelles and bilayers by retaining the confonuational statistics of the hydrocarbon tail withm the RIS (rotational isomeric state) model [4, 5] while representing the hydrophilic/liydrophobic mterface merely by an... [Pg.2376]

Since the amphiphilic nature is essential for the phase behaviour, systems of small molecules (e.g., lipid water mixtures) and polymeric systems (e.g., homopolymer copolymer blends) share many connnon features. [Pg.2377]

A fiirther step in coarse graining is accomplished by representing the amphiphiles not as chain molecules but as single site/bond entities on a lattice. The characteristic architecture of the amphiphile—the hydrophilic head and hydrophobic tail—is lost in this representation. Instead, the interaction between the different lattice sites, which represent the oil, the water and the amphiphile, have to be carefiilly constmcted in order to bring about the amphiphilic behaviour. [Pg.2379]

Slightly more complex models treat the water, the amphiphile and the oil as tliree distinct variables corresponding to the spin variables. S = +1, 0, and -1. The most general Hamiltonian with nearest-neighboiir interactions has the fomi... [Pg.2379]

This Blume-Eiiiery-GrifSths (BEG) model [74] has been studied both by mean field calculations as well as by simulations. There is no pronounced difference between the amphiphile molecules S= 0, the oil or the water. Indeed, the model was first suggested in a quite different context. An extension of the model by Schick and Shih [75] includes an additional interaction of tlie fomi... [Pg.2379]

Lattice models have been studied in mean field approximation, by transfer matrix methods and Monte Carlo simulations. Much interest has focused on the occurrence of a microemulsion. Its location in the phase diagram between the oil-rich and the water-rich phases, its structure and its wetting properties have been explored [76]. Lattice models reproduce the reduction of the surface tension upon adsorption of the amphiphiles and the progression of phase equilibria upon increasmg the amphiphile concentration. Spatially periodic (lamellar) phases are also describable by lattice models. Flowever, the structure of the lattice can interfere with the properties of the periodic structures. [Pg.2380]

An even coarser description is attempted in Ginzburg-Landau-type models. These continuum models describe the system configuration in temis of one or several, continuous order parameter fields. These fields are thought to describe the spatial variation of the composition. Similar to spin models, the amphiphilic properties are incorporated into the Flamiltonian by construction. The Flamiltonians are motivated by fiindamental synnnetry and stability criteria and offer a unified view on the general features of self-assembly. The universal, generic behaviour—tlie possible morphologies and effects of fluctuations, for instance—rather than the description of a specific material is the subject of these models. [Pg.2380]

Most characteristics of amphiphilic systems are associated with the alteration of the interfacial stnicture by the amphiphile. Addition of amphiphiles might reduce the free-energy costs by a dramatic factor (up to 10 dyn cm in the oil/water/amphiphile mixture). Adding amphiphiles to a solution or a mixture often leads to the fomiation of a microenuilsion or spatially ordered phases. In many aspects these systems can be conceived as an assembly of internal interfaces. The interfaces might separate oil and water in a ternary mixture or they might be amphiphilic bilayers in... [Pg.2381]

This inequality indicates the amphiphile adopts a shape essentially equivalent to that of a cone with basal area <3. Such cones self-assemble to fonn spheroidal micelles in solution or spheroidal hemimicelles on surfaces (see section C2.3.15). Single-chain surfactants with bulky headgroups, such as SDS, typify surfactants in this category. [Pg.2588]

In Figure 1, the pairs (or triad) of phases that form ia the various multiphase regions of the diagram are illustrated by the corresponding test-tube samples. Except ia rare cases, the densities of oleic phases are less than the densities of conjugate microemulsions and the densities of microemulsions are less than the densities of conjugate aqueous phases. Thus, for samples whose compositions He within the oleic phase-microemulsion biaodal, the upper phase (ie, layer) is an oleic phase and the lower layer is a microemulsion. For compositions within the aqueous phase-microemulsion biaodal, the upper layer is a microemulsion and the lower layer is an aqueous phase. When a sample forms two layers, but the amphiphile concentration is too low for formation of a middle phase, neither layer is a microemulsion. Instead the upper layer is an oleic phase ("oil") and the lower layer is an aqueous phase ("water"). [Pg.148]

The locations of the tietriangle and biaodal curves ia the phase diagram depead oa the molecular stmctures of the amphiphile and oil, on the concentration of cosurfactant and/or electrolyte if either of these components is added, and on the temperature (and, especially for compressible oils such as propane or carbon dioxide, on the pressure (29,30)). Unfortunately for the laboratory worker, only by measuriag (or correcdy estimatiag) the compositions of T, Af, and B can one be certain whether a certain pair of Hquid layers are a microemulsion and conjugate aqueous phase, a microemulsion and oleic phase, or simply a pair of aqueous and oleic phases. [Pg.148]

Fig. 8. De novo designed a-hehcal proteins. Dimers of the amphiphilic helix-forming peptide a B, GELEELLKKLKELLKG (see Table 1), in which the nature of the linker connecting the individual heflces plays a critical role in the stmcture of the final protein, (a) Using a Pro residue as the linker, ie, a B-Pro-a B, three molecules aggregated to form a trimeric coded-cod. (b) Using Pro-Arg-Arg as the linker, ie, a B-Pro-Aig-Arg-a, resulted in the... Fig. 8. De novo designed a-hehcal proteins. Dimers of the amphiphilic helix-forming peptide a B, GELEELLKKLKELLKG (see Table 1), in which the nature of the linker connecting the individual heflces plays a critical role in the stmcture of the final protein, (a) Using a Pro residue as the linker, ie, a B-Pro-a B, three molecules aggregated to form a trimeric coded-cod. (b) Using Pro-Arg-Arg as the linker, ie, a B-Pro-Aig-Arg-a, resulted in the...
In 1983 the first paper on SHG from LB multilayers (66), using 4-octadec5damino-4 -nitroazobenzene (11) as the amphiphile, was reported. [Pg.535]

Surfactants can be defined very generally as substances which influence the properties of interfaces and surfaces, and which can be used to tune them. Since most materials contain a certain amount of internal interfaces, the study of such substances has attracted longstanding interest. In this chapter, we shall be concerned with a particularly efficient class of surfactants, the amphiphiles... [Pg.631]

These are molecules which contain both hydrophilic and hydrophobic units (usually one or several hydrocarbon chains), such that they love and hate water at the same time. Familiar examples are lipids and alcohols. The effect of amphiphiles on interfaces between water and nonpolar phases can be quite dramatic. For example, tiny additions of good amphiphiles reduce the interfacial tension by several orders of magnitude. Amphiphiles are thus very efficient in promoting the dispersion of organic fluids in water and vice versa. Added in larger amounts, they associate into a variety of structures, filhng the material with internal interfaces which shield the oil molecules—or in the absence of oil the hydrophobic parts of the amphiphiles—from the water [3]. Some of the possible structures are depicted in Fig. 1. A very rich phase... [Pg.632]

Another phase which has attracted recent interest is the gyroid phase, a bicontinuous ordered phase with cubic symmetry (space group Ia3d, cf. Fig. 2 (d) [10]). It consists of two interwoven but unconnected bicontinuous networks. The amphiphile sheets have a mean curvature which is close to constant and intermediate between that of the usually neighboring lamellar and hexagonal phases. The gyroid phase was first identified in lipid/ water mixtures [11], and has been found in many related systems since then, among other, in copolymer blends [12]. [Pg.635]

Models of a second type (Sec. IV) restrict themselves to a few very basic ingredients, e.g., the repulsion between oil and water and the orientation of the amphiphiles. They are less versatile than chain models and have to be specified in view of the particular problem one has in mind. On the other hand, they allow an efficient study of structures on intermediate length and time scales, while still establishing a connection with microscopic properties of the materials. Hence, they bridge between the microscopic approaches and the more phenomenological treatments which will be described below. Various microscopic models of this type have been constructed and used to study phase transitions in the bulk of amphiphihc systems, internal phase transitions in monolayers and bilayers, interfacial properties, and dynamical aspects such as the kinetics of phase separation between water and oil in the presence of amphiphiles. [Pg.638]

Bilayers have received even more attention. In the early studies, water has been replaced by a continuous medium as in the monolayer simulations [64-67]. Today s bilayers are usually fully hydrated , i.e., water is included exphcitly. Simulations have been done at constant volume [68-73] and at constant pressure or fixed surface tension [74-79]. In the latter case, the size of the simulation box automatically adjusts itself so as to optimize the area per molecule of the amphiphiles in the bilayer [33]. If the pressure tensor is chosen isotropic, bilayers with zero surface tension are obtained. Constant... [Pg.641]

In coarse-grained microscopic models, the amphiphiles, oil, and water molecules are still treated as individual particles, but their structure is very much... [Pg.642]

The most complex and powerful coarse-grained models are those which retain the chain character of the amphiphile molecules. [Pg.643]

The Larson model and Larson-type models have been widely used to study micelles [37,111,114-120], amphiphiles at oil/water interfaces [121,122] bilayers [117,123] and various other problems [125-128]. The models differ from each other in the range of the interactions and in the treatment of the amphiphile monomers. Other than in Larson s original model, most authors include only nearest-neighbor interactions, sometimes in combination with a... [Pg.644]

FIG. 7 Snapshot of a bilayer conformation with a pore in the bond-fluctuation model. The dark spheres represent head particles, the light spheres tail particles. Around the pore, the amphiphiles rearrange so as to shield the bilayer interior from the solvent. (From Muller and Schick [133].)... [Pg.646]


See other pages where The Amphiphiles is mentioned: [Pg.414]    [Pg.2363]    [Pg.2364]    [Pg.2376]    [Pg.2377]    [Pg.2379]    [Pg.2380]    [Pg.2380]    [Pg.2418]    [Pg.2554]    [Pg.125]    [Pg.126]    [Pg.147]    [Pg.147]    [Pg.147]    [Pg.148]    [Pg.196]    [Pg.197]    [Pg.197]    [Pg.197]    [Pg.636]    [Pg.641]    [Pg.642]    [Pg.643]    [Pg.644]    [Pg.644]    [Pg.645]   


SEARCH



Catalysts Covalently Bound to the Amphiphilic Block Copolymer

Mean curvature of the amphiphilic film

Solubility of Amphiphiles. The Krafft Phenomenon

The Best Amphiphilic Bistable Rotaxane-based Device to Date

© 2024 chempedia.info