Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydrofuran , hydrogen

Hydrindene, see Indan Hydrindonaphthene, see Indan 1,8-Hydroacenaphthylene, see Acenaphthene Hydrobroinic ether, see Ethyl bromide Hydrocarbon propellant A-17, see Bntane Hydrochloric ether, see Chloroethane Hydrofuran, see Tetrahydrofuran Hydrogen carboxylic acid, see Formic acid Hydrophenol, see Cyclohexanol Hydroqninol, see Hydroquinone Hydroqninole, see Hydroquinone a-Hydroqninone, see Hydroquinone p-Hydroqninone, see Hydroquinone 6-Hydroxyacenaphthenone, see Acenaphthene Hydroxybenzene, see Phenol... [Pg.1491]

Sodium cyanide, Glacial acetic acid, Chlorine gas. Carbon tetrachloride Benzene, Aluminum chloride, 2-Chloroacetyl chloride. Hydrochloric acid. Sodium hydroxide. Methylene chloride. Calcium chloride. Hexanes Methanol, MalononitrUe, o-Chlorobenzaldehyde, Piperdine Tetrahydrofuran, Hydrogen chloride, Chloropicrin, Powdered tin Benzene, Arsenic trichloride. Aluminum chloride. Hexanes Acetone, Sulfuric acid. Chlorine, Calcium chloride Isopropylamine, Glyoxal, Diethyl ether Benzene, Pyridine, Diphenylamine, Arsenic trichloride Tetraethyl lead. Arsenic trichloride... [Pg.154]

In the low-temperature fluorination of benzofuran (39, Y = O) and 1-acetylindole (39. Y = NAc), addition reactions are observed as well as vicinal fluoro trifluoromethoxy adducts 40A and 40B, vicinal difluoridcs 41 are formed.63 Trichloromethiazide is converted into the 5-fluoro derivative 42 in tetrahydrofuran/hydrogen fluoride at 0 C (in dichloromethanc/acetone 42 is accompanied by two nonfluorinated products).64... [Pg.276]

After crystal structure II was deduced, a definitive x-ray diffraction study of tetrahydrofuran/hydrogen sulfide hydrate was undertaken by Mak and McMullan (1965), two of Jeffrey s colleagues. The crystal consists of a face-centered cubic lattice, which fits within a cube of 17.3 A on a side, with parameters as given in Table 2.2a and shown in Figure 1.5b. In direct contrast to the properties of structure I, this figure illustrates how a crystal structure may be completely defined by the vertices of the smaller 512 cavities. Because the 512 outnumber the 51264 cavities in the ratio 16 8, only 512 are clearly visible in Figure 1.5b. [Pg.64]

The editors emphasise the CAUTIONARY notes relating to the handling of hydrogen peroxide (p. 439), and to the distillation of extracts following the use of tetrahydrofuran/hydrogen peroxide in oxidation procedures (p. 552). [Pg.475]

A soln. of methyl N-formyl-L-valyl-L-phenylalaninate in abs. 1 N soln. of HGl in tetrahydrofuran hydrogenated with Pd-on-carbon until after 3-7 hrs. the theoretical amount of H2 has been absorbed methyl L-valyl-L-phenylalani-nate. Y ca. 90%. F. e. s. G. Losse and D. Nadolski, J. pr. 2A, 118 (1964). [Pg.29]

CHHN2O, 1,4-Dichlorobutane - urea host structure, 38B, 594 CH7AI2NO1oSi2f Dickite - formamide, 42B, 500 C2H8O 7.67 H2O, Ethylene oxide hydrate, 30B, 267 43B, 802 CftH80 H2S 17 H2O, Tetrahydrofuran hydrogen sulfide hydrate, 30B, 268... [Pg.305]

Examine the electrostatic potential map of H3B THE (borane-tetrahydrofuran complex) on Learning By Modeling How does the electrostatic potential of the hydrogens bonded to boron dif fer from the potential of the hydrogens of the tetrahydrofuran ring" ... [Pg.280]

Tetrahydrofuran (3) is produced commercially from furfural by decarbonylation followed by hydrogenation it is also produced by several different methods from other raw materials. A complete discussion of tetrahydrofuran is found under Ethers. Polymers of tetrahydrofuran are covered under the general topic. Polyethers. Several other compounds containing the tetrahydrofuran ring, which are most readily produced from furfural, are discussed here. [Pg.74]

Uses. Furfural is primarily a chemical feedstock for a number of monomeric compounds and resins. One route produces furan by decarbonylation. Tetrahydrofuran is derived from furan by hydrogenation. Polytetramethylene ether glycol [25190-06-1] is manufactured from tetrahydrofuran by a ring opening polymeri2ation reaction. Another route (hydrogenation) produces furfuryl alcohol, tetrahydrofurfuryl alcohol, 2-methylfuran, and 2-methyltetrahydrofuran. A variety of proprietary synthetic resins are manufactured from furfural and/or furfuryl alcohol. Other... [Pg.78]

As can be seen, most of the furfural produced in this country is consumed as an intermediate for other chemicals. Hydrogenation to furfuryl alcohol is the largest use. Some of the furfuryl alcohol is further hydrogenated to produce tetrahydrofurfuryl alcohol. The next major product is furan, produced by decarbonylation. Furan is a chemical intermediate, most of it is hydrogenated to tetrahydrofuran, which in turn is polymerized to produce polytetramethylene ether glycol (PTMEG). [Pg.79]

Catalytic hydrogenation of furan to tetrahydrofuran is accompHshed in either Hquid or vapor phase. Hydrogenation of the double bonds is essentially quantitative over nickel catalysts but is generally accompanied by hydrogenolysis over the noble metals. [Pg.81]

In the now-obsolete furfural process, furfural was decarboxylated to furan which was then hydrogenated to tetrahydrofuran (THF). Reaction of THF with hydrogen chloride produced dichlorobutene. Adiponitrile was produced by the reaction of sodium cyanide with the dichlorobutene. The overall yield from furfural to adiponitrile was around 75%. [Pg.220]

Acetyl chlotide is reduced by vatious organometaUic compounds, eg, LiAlH (18). / fZ-Butyl alcohol lessens the activity of LiAlH to form lithium tti-/-butoxyalumium hydtide [17476-04-9] C22H2gA102Li, which can convert acetyl chlotide to acetaldehyde [75-07-0] (19). Triphenyl tin hydtide also reduces acetyl chlotide (20). Acetyl chlotide in the presence of Pt(II) or Rh(I) complexes, can cleave tetrahydrofuran [109-99-9] C HgO, to form chlorobutyl acetate [13398-04-4] in about 72% yield (21). Although catalytic hydrogenation of acetyl chlotide in the Rosenmund reaction is not very satisfactory, it is catalyticaHy possible to reduce acetic anhydride to ethylidene diacetate [542-10-9] in the presence of acetyl chlotide over palladium complexes (22). Rhodium trichloride, methyl iodide, and ttiphenylphosphine combine into a complex that is active in reducing acetyl chlotide (23). [Pg.81]

Phenyllithium caimot be formed from fluoroben2ene. Instead, the electronegativity of fluorine makes the ortho hydrogen sufficiently acidic to permit reaction with / -butyUithium in tetrahydrofuran at —50°C to give 2-fluorophenyllithium [348-53-8]. An isomer, 4-fluoropheny11ithium [1493-23-8] was reported to be explosive in the soHd state (167). [Pg.322]

Much more important is the hydrogenation product of butynediol, 1,4-butanediol [110-63-4]. The intermediate 2-butene-l,4-diol is also commercially available but has found few uses. 1,4-Butanediol, however, is used widely in polyurethanes and is of increasing interest for the preparation of thermoplastic polyesters, especially the terephthalate. Butanediol is also used as the starting material for a further series of chemicals including tetrahydrofuran, y-butyrolactone, 2-pyrrohdinone, A/-methylpyrrohdinone, and A/-vinylpyrrohdinone (see Acetylene-DERIVED chemicals). The 1,4-butanediol market essentially represents the only growing demand for acetylene as a feedstock. This demand is reported (34) as growing from 54,000 metric tons of acetylene in 1989 to a projected level of 88,000 metric tons in 1994. [Pg.393]

Survey of the patent Hterature reveals companies with processes for 1,4-butanediol from maleic anhydride include BASF (94), British Petroleum (95,96), Davy McKee (93,97), Hoechst (98), Huels (99), and Tonen (100,101). Processes for the production of y-butyrolactone have been described for operation in both the gas (102—104) and Hquid (105—108) phases. In the gas phase, direct hydrogenation of maleic anhydride in hydrogen at 245°C and 1.03 MPa gives an 88% yield of y-butyrolactone (104). Du Pont has developed a process for the production of tetrahydrofuran back-integrated to a butane feedstock (109). Slurry reactor catalysts containing palladium and rhenium are used to hydrogenate aqueous maleic acid to tetrahydrofuran (110,111). [Pg.453]

Butane-Based Transport-Bed Process Technology. Du Pont aimounced the commercialization of a moving-bed recycle-based technology for the oxidation of butane to maleic anhydride (109,149). Athough maleic anhydride is produced in the reaction section of the process and could be recovered, it is not a direct product of the process. Maleic anhydride is recovered as aqueous maleic acid for hydrogenation to tetrahydrofuran [109-99-9] (THF). [Pg.456]

AlkoxyaLkyl hydroperoxides are more commonly called ether hydroperoxides. They form readily by the autoxidation of most ethers containing a-hydrogens, eg, dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether, di- -butyl ether, and diisoamyl ether (10,44). From certain ethers, eg, diethyl ether (in the following, R = H R = 35 — CH2CH2), the initially formed ether hydroperoxide can yield alcohol on standing, or with acid treatment... [Pg.113]

It resembles tetracyanoethylene in that it adds reagents such as hydrogen (31), sulfurous acid (31), and tetrahydrofuran (32) to the ends of the conjugated system of carbon atoms suffers displacement of one or two cyano groups by nucleophilic reagents such as amines (33) or sodiomalononittile (34) forms TT-complexes with aromatic compounds (35) and takes an electron from iodide ion, copper, or tertiary amines to form an anion radical (35,36). The anion radical has been isolated as salts of the formula (TCNQ) where is a metal or ammonium cation, and n = 1, 1.5, or 2. Some of these salts have... [Pg.404]


See other pages where Tetrahydrofuran , hydrogen is mentioned: [Pg.98]    [Pg.403]    [Pg.403]    [Pg.193]    [Pg.653]    [Pg.401]    [Pg.401]    [Pg.402]    [Pg.403]    [Pg.486]    [Pg.486]    [Pg.487]    [Pg.98]    [Pg.403]    [Pg.403]    [Pg.193]    [Pg.653]    [Pg.401]    [Pg.401]    [Pg.402]    [Pg.403]    [Pg.486]    [Pg.486]    [Pg.487]    [Pg.184]    [Pg.284]    [Pg.281]    [Pg.33]    [Pg.324]    [Pg.448]    [Pg.82]    [Pg.97]    [Pg.359]    [Pg.361]    [Pg.260]    [Pg.528]    [Pg.202]    [Pg.190]    [Pg.10]    [Pg.24]   


SEARCH



© 2024 chempedia.info