Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydrofolate synthesis inhibitors

Trimethoprim (TMP), a folate analog and inhibitor of dihydrofolate reductase (Figure V-1-3), is usually used together with sulfamethoxazole (SMX). The simultaneous inhibition of the tetrahydrofolate synthesis pathway at two steps has a synergistic effect and prevents the rapid generation of resistance. The clinical uses and side effects of TMP-SMX are discussed. [Pg.195]

The methylation of deoxyuridine monophosphate (dUMP) to thymidine monophosphate (TMP), catalyzed by thymidylate synthase, is essential for the synthesis of DNA. The one-carbon fragment of methy-lene-tetrahydrofolate is reduced to a methyl group with release of dihydrofolate, which is then reduced back to tetrahydrofolate by dihydrofolate reductase. Thymidylate synthase and dihydrofolate reductase are especially active in tissues with a high rate of cell division. Methotrexate, an analog of 10-methyl-tetrahydrofolate, inhibits dihydrofolate reductase and has been exploited as an anticancer drug. The dihydrofolate reductases of some bacteria and parasites differ from the human enzyme inhibitors of these enzymes can be used as antibacterial drugs, eg, trimethoprim, and anti-malarial drugs, eg, pyrimethamine. [Pg.494]

Trimethoprim is a competitive inhibitor of the enzyme dihydrofolate reductase and can thus prevent the formation of tetrahydrofolate thereby blocking the synthesis of purines. The affinity of trimethoprim for the enzyme in microorganisms is 10,000 times higher than for the human enzyme which explains the selective toxicity. Used alone its main indication is acute uncomplicated urinary tract infections. It is then as effective as co-trimoxazole but has the advantage of fewer adverse reactions. [Pg.414]

The other major class of antimalarials are the folate synthesis antagonists. There is a considerable difference in the drug sensitivity and affinity of dihydrofolate reductase enzyme (DHFR) between humans and the Plasmodium parasite. The parasite can therefore be eliminated successfully without excessive toxic effects to the human host. DHFR inhibitors block the reaction that transforms deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) at the end of the pyrimidine-synthetic pathway. This reaction, a methylation, requires N °-methylene-tetrahydrofolate as a carbon carrier, which is oxidized to dihydrofolate. If the dihydrofolate cannot then be reduced back to tetrahydrofolate (THF), this essential step in DNA synthesis will come to a standstill. [Pg.587]

Inhibitors are substances that tend to decrease the rate of an enzyme-catalysed reaction. Although some act on the substrate, the discussion here will be restricted to those inhibitors which combine directly with the enzyme. Inhibitors have many uses, not only in the determination of the characteristics of enzymes, but also in aiding research into metabolic pathways where an inhibited enzyme will allow metabolites to build up so that they are present in detectable levels. Another important use is in the control of infection where drugs such as sulphanilamides competitively inhibit the synthesis of tetrahydrofolates which are vitamins essential to the growth of some bacteria. Many antibiotics are inhibitors of bacterial protein synthesis (e.g. tetracyclin) and cell-wall synthesis (e.g. penicillin). [Pg.289]

Another group of inhibitors prevents nucleotide biosynthesis indirectly by depleting the level of intracellular tetrahydrofolate derivatives. Sulfonamides are structural analogs of p-aminobenzoic acid (fig. 23.19), and they competitively inhibit the bacterial biosynthesis of folic acid at a step in which p-aminobenzoic acid is incorporated into folic acid. Sulfonamides are widely used in medicine because they inhibit growth of many bacteria. When cultures of susceptible bacteria are treated with sulfonamides, they accumulate 4-carboxamide-5-aminoimidazole in the medium, because of a lack of 10-formyltetrahydrofolate for the penultimate step in the pathway to IMP (see fig. 23.10). Methotrexate, and a number of related compounds inhibit the reduction of dihydrofolate to tetrahydrofolate, a reaction catalyzed by dihydrofolate reductase. These inhibitors are structural analogs of folic acid (see fig. 23.19) and bind at the catalytic site of dihydrofolate reductase, an enzyme catalyzing one of the steps in the cycle of reactions involved in thymidylate synthesis (see fig. 23.16). These inhibitors therefore prevent synthesis of thymidylate in replicating... [Pg.551]

H. Robinson, D. H. Suckling, C. J. Wood, H. C. S. Specific inhibitors in vitamin biosynthesis. Part 9. Reactions of 7,7-dialkyl-7,8-dihy-dropteridines of use in the synthesis of potential inhibitors of tetrahydrofolate biosynthesis. J. Chem. Soc. Perkin Trans. 1 1985, 2145-2150. [Pg.257]

Aminopterin and amethopterin are 4-amino analogues of folic acid (Fig. 11.5) and as such are potent inhibitors of the enzyme dihydrofolate reductase (EC 1.5.1.3) (Blakley, 1969). This enzyme catalyses the reduction of folic acid and dihydrofolic acid to tetrahy-drofolic acid which is the level of reduction of the active coenzyme involved in many different aspects of single carbon transfer. As is clear from Fig. 11.6, tetrahydrofolate is involved in the metabolism of (a) the amino acids glycine and methionine (b) the carbon atoms at positions 2 and 8 of the purine ring (c) the methyl group of thymidine and (d) indirectly in the synthesis of choline and histidine. [Pg.230]

Methotrexate is a potent inhibitor of dihydrofolate reductase, with an affinity 1,000-fold greater than that of dUiydrofolate. Chemotherapy consists of alternating periods of administration of methotrexate and folate (normally as 5-formyl-tetrahydrofolate, leucovorin) to replete the normal tissues and avoid induction of folate deficiency- so-called leucovorin rescue. As well as depleting tissue pools of tetrahydrofolate, methotrexate leads to the accumulation of relatively large amounts of 10-formyl-dihydrofolate, which is apotentinhibitor of both thymidylate synthetase and glycinamide ribotide transformylase, an intermediate step in purine nucleotide synthesis. It is likely that this, rather than simple depletion of tetrahydrofolate, is the basis of the cytotoxic action of methotrexate (Barametal., 1988). [Pg.288]

The synthesis of TMP can also be blocked by inhibiting the regeneration of tetrahydrofolate. Analogs of dihydrofolate, such as aminopterin and methotrexate (amethopterin), are potent competitive inhibitors (.ST < 1 nM) of dihydrofolate reductase. [Pg.1045]

Purines, pyrimidines and their nucleosides and nucleoside triphosphates are synthesized in the cytoplasm. At this stage the antifolate drugs (sulphonamides and dihydrofolate reductase inhibitors) act by interfering with the synthesis and recycling of the co-factor dihydrofolic acid (DHF). Thymidylic acid (2-deoxy-thymidine monophosphate, dTMP) is an essential nucleotide precursor of DNA synthesis. It is produced by the enzyme thymidylate synthetase by transfer of a methyl group from tetrahydrofolic acid (THF) to the uracil base on uridylic acid (2-deoxyuridine monophosphate, dUMP) (Fig. 12.5). THF is converted to DHF in this process and must be reverted to THF by the enzyme dihydrofolate reductase (DHFR) before... [Pg.213]

The answer is c. (Murray, pp 48-73. Scriver, pp 4571-4636. Sack, pp 3-17. Wilson, pp 287-317.) Since rapidly multiplying cancer cells are dependent upon the synthesis of deoxythymidilate (dTMP) from deoxy-uridylate (dUMP), a prime target in cancer therapy has been inhibition of dTMP synthesis. The anticancer drug fluorouracil is converted in vivo to fluorodeoxyuridylate (FdUMP), which is an analogue of dlJMP FdUMP irreversibly forms a covalent complex with the enzyme thymidylate synthase and its substrate N5,N10-methylene-tetrahydrofolate. This is a case of suicide inhibition, where an enzyme actually participates in the change of a substrate into a covalently linked inhibitor that irreversibly inhibits its catalytic activity. [Pg.133]

Methotrexate, a common antimetabolite, was introduced several decades ago for the treatment of psoriasis and remains an effective therapeutic approach. It is a synthetic analogue of folic acid that acts as a competitive inhibitor of the enzyme dihydrofolate reductase, that is responsible for the conversion of dihydrofolate to tetrahydrofolate. Tetrahydrofolate is an essential cofactor for the synthesis of thymidy-late and purine nucleotides required for DNA and RNA synthesis. Methotrexate inhibits replication and function of T and B cells and suppresses secretion of various cytokines such as IL-1, IFN-y,... [Pg.1777]

Dietary folates must be chemically reduced to their tetrahy-dro forms, with four hydrogens on the pteridine ring, to be active. The enzyme responsible for this reduction is dihydrofolate reductase (DHFR), a key enzyme whose actions are inhibited by methotrexate and other antifolates. The result of this inhibition is depletion of intracellular pools of reduced folates (tetrahydrofolates) essential for thymidylate and purine synthesis. Lack of either thymidine or purines prevents synthesis of DNA. The DHFR-mediated effects of antifolate drugs on normal and probably also on cancerous cells may be neutralized by supplying reduced folates exogenously. The reduced folate used clinically for rescue is leucovorin (folinic acid), which bypasses the metabolic block induced by DHFR inhibitors. ... [Pg.2300]

Two diastereomers of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid, DDATHF, 127, both potent inhibitors of folate metabolism and de novo purine synthesis , have been synthesized by catalytic reduction of the unsaturated intermediate diethyl 2-acetyl-5,10-dideaza-9,10-didehydrofolate with Adams catalyst and carrier-free tritium gas in AcOH and H20 solution. Each of the separated (6R) and (6S) diastereomers had specific activity 11.2 Ci mmol and contained tritium almost exclusively at the metabolically stable positions Cjj, C, C J, C gp C o, and the phenyl ring of DDATHF. [Pg.1154]

Introduction and Rationale. DHFR is an ideal system to study for a number of reasons. The catalytic properties of DHFR are such that under normal physiologic conditions and with the NADPH cofactor bound, 7,8-dihydrofolate (DHF) is reduced to 5,6,7,8-tetrahydrofolate (THF) (7). Thus DHFR plays an important role in cell metabolism by maintaining a supply of THF. THF is used by the cell as both a cofactor and in substrate quantities in the synthesis of deoxythymidine. By inhibiting the production of THF, deoxythymidine synthesis is curtailed, nucleic add replication comes to a halt, and cell proliferation ceases. It is this biochemical cascade which supplies the pharmacological and chemotherapeutic applications of inhibitors to DHFR. [Pg.73]

Another enzyme for which X-ray diffraction studies have aided in an analysis of the mode of action is the enzyme dihydrofolate reductase. This catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential coenzyme used in the synthesis of thymidylate, inosinate, and methionine. The antitumor agent methotrexate is a powerful inhibitor of dihydrofolate reductase, causing, on binding, a cellular deficiency of thymidylate (the cause of its antitumor activity). The crystal structures of the enzyme from two bacterial sources—Escherichia coli and Lactobacillus casei—and from chicken liver have been studied (88-90). Both the E. coli and L casei enzymes have been studied as complexes with methotrexate bound at the active site, and, in the case of the . casei enzyme, the cofactor, NADPH, was also present. [Pg.63]

The unique aspects of thymine synthesis allow the design of antimetabolites that may have greater specificity in this process. Aminopterin and methotrexate have been used with some success. These are inhibitors of tetrahydrofolate formation where, at the correct dosage, the conversion of dUMP to dTMP appears to be more sensitive than many other reactions and is preferentially inhibited. This inhibits DNA formation and cell proliferation. Other... [Pg.555]


See other pages where Tetrahydrofolate synthesis inhibitors is mentioned: [Pg.272]    [Pg.273]    [Pg.299]    [Pg.275]    [Pg.1689]    [Pg.297]    [Pg.176]    [Pg.518]    [Pg.141]    [Pg.578]    [Pg.495]    [Pg.164]    [Pg.127]    [Pg.288]    [Pg.329]    [Pg.164]    [Pg.765]    [Pg.288]    [Pg.291]    [Pg.264]    [Pg.1883]    [Pg.31]    [Pg.126]    [Pg.67]    [Pg.601]    [Pg.49]    [Pg.57]    [Pg.1100]    [Pg.869]   
See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Synthesis inhibitors

Tetrahydrofolate

Tetrahydrofolate Synthesis

Tetrahydrofolates

© 2024 chempedia.info