Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahydrofolate biosynthesis

H. Robinson, D. H. Suckling, C. J. Wood, H. C. S. Specific inhibitors in vitamin biosynthesis. Part 9. Reactions of 7,7-dialkyl-7,8-dihy-dropteridines of use in the synthesis of potential inhibitors of tetrahydrofolate biosynthesis. J. Chem. Soc. Perkin Trans. 1 1985, 2145-2150. [Pg.257]

Notably, the GTP cyclohydrolases that catalyze the first committed step in the pathways of tetrahydrofolate biosynthesis in plants and microorganisms and of tetrahydrobiopterin in animals are orthologs. [Pg.248]

Bister, B., Bischoff, D., Strdbele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A.T., Ziihner, H., Fiedler, H.P., and Siissmuth, R.D. (2004) Abyssomidn C - A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed., 43, 2574-2576. [Pg.127]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

Since biosynthesis of IMP consumes glycine, glutamine, tetrahydrofolate derivatives, aspartate, and ATP, it is advantageous to regulate purine biosynthesis. The major determinant of the rate of de novo purine nucleotide biosynthesis is the concentration of PRPP, whose pool size depends on its rates of synthesis, utilization, and degradation. The rate of PRPP synthesis depends on the availabihty of ribose 5-phosphate and on the activity of PRPP synthase, an enzyme sensitive to feedback inhibition by AMP, ADP, GMP, and GDP. [Pg.294]

Reaction 12 of Figure 34—7 is the only reaction of pyrimidine nucleotide biosynthesis that requires a tetrahydrofo-late derivative. The methylene group of A A Tmethyl-ene-tetrahydrofolate is reduced to the methyl group that is transferred, and tetrahydrofolate is oxidized to dihydro-... [Pg.296]

Despite our earlier failure in formate feeding experiments, [3- C]serine, [1,2- CJglycine, and [Me- C]methionine were found to enrich C-13 in neosaxitoxin effectively (7). The best incorporation was observed with methionine, indicating it is the direct precursor via S-adenosylmethionine. Glycine C-2 and serine C-3 must have been incorporated through tetrahydrofolate system as methyl donors in methionine biosynthesis. [Pg.23]

The dihydrofolate reductase enzyme (DHFR) is involved in one-carbon metabolism and is required for the survival of prokaryotic and eukaryotic cells. The enzyme catalyzes the reduction of dihydrofolate to tetrahydrofolate, which is required for the biosynthesis of serine, methionine, purines, and thymidylate. The mouse dihydrofolate reductase (mDHFR) is a small (21 kD), monomeric enzyme that is highly homologous to the E. coli enzyme (29% identify) (Pelletier et al., 1998). The three-dimensional structure of DHFR indicates that it is comprised of three structural fragments F[l], F[2] andF[3] (Gegg etal., 1997). [Pg.69]

These are pyrimidine derivatives and are effective because of differences in susceptibility between the enzymes in humans and in the infective organism. Anticancer agents based on folic acid, e.g. methotrexate, inhibit dihydrofolate reductase, but they are less selective than the antimicrobial agents and rely on a stronger binding to the enzyme than the natural substrate has. They also block pyrimidine biosynthesis. Methotrexate treatment is potentially lethal to the patient, and is usually followed by rescue with folinic acid (A -formyl-tetrahydrofolic acid) to counteract the folate-antagonist action. The rationale is that folinic acid rescues normal cells more effectively than it does tumour cells. [Pg.455]

Folate, the anion of folic acid, is made up of three different components—a pteridine derivative, 4-aminobenzoate, and one or more glutamate residues. After reduction to tetrahydrofolate (THF), folate serves as a coenzyme in the Q metabolism (see p. 418). Folate deficiency is relatively common, and leads to disturbances in nucleotide biosynthesis and thus cell proliferation. As the precursors for blood cells divide particularly rapidly, disturbances of the blood picture can occur, with increased amounts of abnormal precursors for megalocytes megaloblastic anemia). Later, general damage ensues as phospholipid... [Pg.366]

Trimethoprim acts in the body by interfering with the action of hydrofolate reductase, an enzyme that reduces dihydrofolic acid to tetrahydrofolic acid. This process is necessary for purine biosynthesis of live organisms and DNA, respectively. Reducing the dihydrofolic acid to tetrahydrofolic acid is also catalyzed in humans by dihydrofolate reductase. However, trimethoprim has thousands of more inhibitory effects with respect to bacterial enzymes than with respect of analogons enzymes of mammals, which is the main benefit of trimethoprim. [Pg.510]

Tetrahydrofolic acid (THF) Loose Folic acid Methyl group donor in one-carbon transfer reactions critical in biosynthesis of purines and pyrimidines... [Pg.33]

Tetrahydrofolate is in turn converted to N, N °-methylenetetrahydrofolate, which is an essential cofactor for the synthesis of thymidylate, purines, methionine, and glycine. The major mechanism by which methotrexate brings about cell death appears to be inhibition of DNA synthesis through a blockage of the biosynthesis of thymidylate and purines. [Pg.643]

Thymidylate synthase (TS) is the enzyme that converts 2-deoxyuridine monophosphate into thymidine monophosphate. This is a key step in the biosynthesis of DNA. This enzymatic reaction of methylation involves the formation of a ternary complex between the substrate, the enzyme, and tetrahydrofolic acid (CH2FAH4). The catalytic cycle involves the dissociation of this complex and the elimination of FAH4. It is initiated by pulling out the proton H-5, thus generating an exocyclic methylene compound. As the release of a F" " ion is energetically forbidden, the fluorine atom that replaces the proton H-5 cannot be pulled out by the base. This leads to inhibition of the enzyme (Figure 7.2). [Pg.225]

The enzymes involved in catecholamine biosynthesis have been studied intensively and are the targets of many drugs. The key enzyme is tyrosine hydroxylase, which requires a tetrahydrofolate coenzyme, O, and Fe +, and is quite specific. As usual for the first enzymes in a biosynthetic pathway, tyrosine hydroxylase is rate limiting, and... [Pg.218]

In the biosynthesis of serine from glycine, (25) serves as the methylene donor. The reverse of this reaction is important in the catabolism of serine and provides a major source of the one-carbon units needed in biosynthesis (80MI11003). In addition to tetrahydrofolate, pyridoxal phosphate is required as a coenzyme in this transformation. The topic will be taken up again in the next section. [Pg.263]

Phosphorylation of dCDP to dCTP (step k, Fig. 25-14) completes the biosynthesis of the first of the pyrimidine precursors of DNA. The uridine nucleotides arise in two ways. Reduction of UDP yields dUDP (step), Fig. 25-14). However, the deoxycytidine nucleotides are more often hydrolytically deaminated (reactions / and / ) 274 Methylation of dUMP to form thymidylate, dTMP (step n, Fig. 25-14), is catalyzed by thymidylate synthase. The reaction involves transfer of a 1-carbon unit from methylene tetrahydrofolic acid with subsequent reduction using THF as the electron donor. A probable mechanism is shown in Fig. 15-21. See also Box 15-E. Some bacterial transfer RNAs contain 4-thiouridine (Fig. 5-33). The sulfur atom is introduced by a sulfurtransferase (the Thil gene product in E. coli). The same protein is essential for thiamin biosynthesis (Fig. 25-21)274a... [Pg.1452]

A5-Methyltetrahydrofolate is the methyl-group donor substrate for methionine synthase, which catalyzes the transfer of the five-methyl group to the sulfhydryl group of homocysteine. This and selected reactions of the other folate derivatives are outlined in figure 10.15, which emphasizes the important role tetrahydrofolate plays in nucleic acid biosynthesis by serving as the immediate source of one-carbon units in purine and pyrimidine biosynthesis. [Pg.215]

Another group of inhibitors prevents nucleotide biosynthesis indirectly by depleting the level of intracellular tetrahydrofolate derivatives. Sulfonamides are structural analogs of p-aminobenzoic acid (fig. 23.19), and they competitively inhibit the bacterial biosynthesis of folic acid at a step in which p-aminobenzoic acid is incorporated into folic acid. Sulfonamides are widely used in medicine because they inhibit growth of many bacteria. When cultures of susceptible bacteria are treated with sulfonamides, they accumulate 4-carboxamide-5-aminoimidazole in the medium, because of a lack of 10-formyltetrahydrofolate for the penultimate step in the pathway to IMP (see fig. 23.10). Methotrexate, and a number of related compounds inhibit the reduction of dihydrofolate to tetrahydrofolate, a reaction catalyzed by dihydrofolate reductase. These inhibitors are structural analogs of folic acid (see fig. 23.19) and bind at the catalytic site of dihydrofolate reductase, an enzyme catalyzing one of the steps in the cycle of reactions involved in thymidylate synthesis (see fig. 23.16). These inhibitors therefore prevent synthesis of thymidylate in replicating... [Pg.551]

Trimethoprim (Proloprim, Trimpex) interferes with the bacterial folic acid pathway by inhibiting the dihydrofolate reductase enzyme in susceptible bacteria (see Fig. 33-2). This enzyme converts dihydrofolic acid to tetrahydrofolic acid during the biosynthesis of folic acid cofactors. By inhibiting this enzyme, trimethoprim directly interferes with the production of folic acid cofactors, and subsequent production of vital bacterial nucleic acids is impaired. [Pg.513]

Methotrexate acts by inhibition of dihydrofolate reductase, the enzyme requisite for the reduction of dihydrofolic acid (3) to 5,6,7,8-tetrahydrofolic acid (4). In turn, (4) is a precursor to a series of enzyme cofactors (5-7) essential for the transfer of one carbon unit necessary for the biosynthesis of purines and pyrimidines and hence, ultimately, DNA. As an inhibitor of dihydrofolate reductase, methotrexate kills cells during the S phase of the cell cycle, when the cells are in the log phase of growth. Unfortunately, this cytotoxicity is non-selective, and rapidly proliferating normal cells, e.g., gastrointestinal epithelium cells and bone marrow, are dramatically affected as well. In addition, recent use of high dose methotrexate therapy with leucovorin rescue has led to additional clinical problems arising from a dose-related nephrotoxic metabolite, 7-hydroxy methotrexate (8). Finally, the very polar nature of methotrexate renders it virtually impenetrable to the blood-brain barrier, which can necessitate direct intrathecal injection in order to achieve therapeutic doses for the treatment of CNS tumours. [Pg.87]

Fig. 1.1 PABA and p-aminobenzenesulfonamide show similar critical distances. The incorporation of the sulfonamide instead of PABA inhibits the biosynthesis of tetrahydrofolic acid. Fig. 1.1 PABA and p-aminobenzenesulfonamide show similar critical distances. The incorporation of the sulfonamide instead of PABA inhibits the biosynthesis of tetrahydrofolic acid.
Vitamin B12 activates methyl groups for methionine biosynthesis by binding them to the Co ion at the sixth position. The methyl group donor to Bi2 is 5-methyl tetrahydrofolate. The methyl-Bi2 donates its methyl group to homocysteine, forming methionine. [Pg.81]

Folate in the human organism is converted to tetrahydrofolate (THF or FH4) by a reductive process. The reduction reaction is a stepwise one folate to dihydrofolate, then to THF. A single enzyme, dihydrofolate reductase, catalyzes both steps. The reaction is inhibited by folate analogues and the antitumor agents methotrexate and aminopterin (Figure 6.3). Because THF is required for DNA biosynthesis (Chapter 10) and tumors have a very high level of DNA biosynthetic activity, even modest decreases in THF availability will inhibit tumor growth. [Pg.134]

There is some evidence for the existence of a metabolon for de novo purine biosynthesis which contains the 14 enzymes of the pathway (Fig. 15-16) and four additional enzymes involved in the synthesis of /V10-formyl tetrahydrofolate. [Pg.442]


See other pages where Tetrahydrofolate biosynthesis is mentioned: [Pg.112]    [Pg.246]    [Pg.578]    [Pg.1171]    [Pg.135]    [Pg.204]    [Pg.263]    [Pg.808]    [Pg.1399]    [Pg.126]    [Pg.127]    [Pg.132]    [Pg.133]    [Pg.79]    [Pg.20]    [Pg.63]    [Pg.80]    [Pg.58]    [Pg.224]    [Pg.224]    [Pg.727]    [Pg.272]    [Pg.276]    [Pg.364]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Tetrahydrofolate

Tetrahydrofolates

© 2024 chempedia.info