Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terbium earths

Ytterby, a village in Sweden near Vauxholm) Yttria, which is an earth containing yttrium, was discovered by Gadolin in 1794. Ytterby is the site of a quarry which yielded many unusual minerals containing rare earths and other elements. This small town, near Stockholm, bears the honor of giving names to erbium, terbium, and ytterbium as well as yttrium. [Pg.73]

Ytterby, a village in Sweden) Discovered by Mosander in 1843. Terbium is a member of the lanthanide or "rare earth" group of elements. It is found in cerite, gadolinite, and other minerals along with other rare earths. It is recovered commercially from monazite in which it is present to the extent of 0.03%, from xenotime, and from euxenite, a complex oxide containing 1% or more of terbia. [Pg.189]

Terbium has been isolated only in recent years with the development of ion-exchange techniques for separating the rare-earth elements. As with other rare earths, it can be produced by reducing the anhydrous chloride or fluoride with calcium metal in a tantalum crucible. Calcium and tantalum impurities can be removed by vacuum remelting. Other methods of isolation are possible. [Pg.189]

Although rare-earth ions are mosdy trivalent, lanthanides can exist in the divalent or tetravalent state when the electronic configuration is close to the stable empty, half-fUed, or completely fiUed sheUs. Thus samarium, europium, thuUum, and ytterbium can exist as divalent cations in certain environments. On the other hand, tetravalent cerium, praseodymium, and terbium are found, even as oxides where trivalent and tetravalent states often coexist. The stabili2ation of the different valence states for particular rare earths is sometimes used for separation from the other trivalent lanthanides. The chemicals properties of the di- and tetravalent ions are significantly different. [Pg.540]

The uranium ore from Elliot Lake, Canada, contains yttrium and lanthanides (see Uranium and uranium compounds). In the Jiangxi province of the People s Repubhc of China a large reserve of a rare-earth-containing clay contains over 1,000,000 t of REO. This ore is characterized by having a low cerium content (<5%) but a high content in samarium, europium, terbium, and yttrium compared to the main base REO ores (Table 6). ... [Pg.543]

The compounds of the rare earth elements are usually highly colored. Neodymium s compounds are mainly lavender and violet, samarium s yellow and brown, holmium s yellow and orange, and erbium s rose-pink. Europium makes pink salts which evaporate easily. Dysprosium makes greenish yellow compounds, and ytterbium, yellow-gold. Compounds of lutetium are colorless, and compounds of terbium are colorless, dark brown, or black. [Pg.43]

In conclusion I should like to consider a few of the chemical investigations which might be accomplished in the rare earth field by Mossbauer spectroscopy. The study of nonstoichiometric oxides has been discussed earlier, but there is the problem of finding an appropriate doping nuclide for the praseodymium oxide system. The element most capable of following the changes in oxidation state of the praseodymium is terbium-159, which does have a Mossbauer state, however, with a rather broad resonance (58,0 k.e.v., = 0.13 nsec.). Nevertheless, with a sufiiciently... [Pg.124]

Rare earth. One of a group of 15 chemically related elements lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. [Pg.412]

Dysprosium - the atomic number is 66 and the chemical symbol is Dy. The name derives from the Greek dysprositos for hard to get at , due to the difficulty in separating this rare earth element from a holmium mineral in which it was found. Discovery was first claimed by the Swiss chemist Marc Delafontaine in the mineral samarskite in 1878 and he called it philippia. Philippia was subsequently found to be a mixture of terbium and erbium. Dysprosium was later discovered in a holmium sample by the French chemist Paul-Emile Lecoq de Boisbaudron in 1886, who was then credited with the discovery. It was first isolated by the French chemist George Urbain in 1906. [Pg.8]

Terbium - the atomic number is 65 and the chemical symbol is Tb. The name derives from the village of Ytterby in Sweden, where the mineral ytterbite (the source of terbium) was first found. It was discovered by the Swedish surgeon and chemist Carl-Gustav Mosander in 1843 in an yttrium salt, which he resolved into three elements. He called one yttrium, a rose colored salt he called terbium and a deep yellow peroxide he called erbium. The chemist Berlin detected only two earths in yttrium, i.e., yttrium and the rose colored oxide he called erbium. In 1862, the Swiss chemist Marc Delafontaine reexamined yttrium and found the yellow peroxide. Since the name erbium had now been assigned to the rose colored oxide, he initially called the element mosandrum (after Mosander) but he later reintroduced the name terbium for the yellow peroxide. Thus the original names given to erbium and terbium samples are now switched. Since Bunsen spectroscopically examined Mosander s erbium (now terbium) sample and declared that it was a mixture, the question of who actually discovered terbium, Mosander or Delafontaine remains unresolved to this day. [Pg.20]

Yttrium (j Y) is often confused with another element of the lanthanide series of rare Earths— Ytterbium ( Yb). Also confusing is the fact that the rare-earth elements terbium and erbium were found in the same minerals in the same quarry in Sweden. Yttrium ranks second in abundance of all 16 rare-earth, and Ytterbium ranks 10th. Yttrium is a dark silvery-gray hghtweight metal that, in the form of powder or shavings, will ignite spontaneously. Therefore, it is considered a moderately active rare-earth metal. [Pg.120]

ISOTOPES There are a total of 52 isotopes of terbium, and only one of these is stable (Tb-159). Terbium-59 makes up 100% of the element found in the Earth s crust... [Pg.292]

There are two allotropic (crystal forms) of terbium, both of which are dependent on its temperature. The alpha ((a) form exists at room temperatures and up to temperamres of 1,298°C, and the beta ( 3) form exists beyond these temperamres. Although terbium is a silvery metal that resembles aluminum and feels hke lead, it is much heavier than either of these two elements. It is placed in the yttrium subgroup (lanthanide series) of the rare-earths. It is also resistant to corrosion. [Pg.293]

Terbium is not found in great quantities on Earth. In fact, minerals where terbium is found contain about 0.03% terbium. Not much of the stable isotope is found as a free metal rather most of it is mixed with other rare-earths or are in compound forms. [Pg.293]

Of all the 17 rare-earths in the lanthanide series, terbium is number 14 in abundance. Terbium can be separated from the minerals xenotime (YPO ) and euxenite, a mixmre of the following (Y, Ca, Er, La, Ce, Y, Th)(Nb, Ta, Ti O ). It is obtained in commercial amount from monazite sand by the ion-exchange process. Monazite may contain as much as 50% rare-earth elements, and about 0.03% of this is terbium. [Pg.293]

A stone quarry near the town of Ytterby in Sweden produces a large number of rare-earth elements. Carl Gustaf Mosander (1797-1858) discovered several rare-earths, including the rare-earth mineral gadolinite in this quarry in 1843. He was able to separate gadolinite into three separate, but closely related, rare-earth minerals that he named yttria (which was colorless), erbia (yellow color), and terbia (rose-colored). From these minerals, Mosander identified two new rare-earth elements, terbium and erbium. The terbia that was found was really a compound of terbium terbium oxide (Tb O )... [Pg.293]

In the 1800s chemists searched for new elements by fractionating the oxides of rare-earths. Carl Gustaf Mosander s experiments indicated that pure ceria ores were actually contaminated with oxides of lanthanum, a new element. Mosander also fractionated the oxides of yttria into two new elements, erbium and terbium. In 1878 J. Louis Soret (1827—1890) and Marc Delafontaine (1837-1911), through spectroscopic analysis, found evidence of the element holmium, but it was contaminated by the rare-earth dysprosia. Since they could not isolate it and were unable to separate holmium as a pure rare-earth, they did not receive credit for its discovery. [Pg.296]

Carl Gustaf Mosander, a Swedish chemist, successfully separated two rare-earths from a sample of lanthanum found in the mineral gadolinite. He then tried the same procedure with the rare-earth yttria. He was successful in separating this rare-earth into three separate rare-earths with similar names yttia, erbia, and terbia. For the next 50 years scientists confused these three elements because of their similar names and very similar chemical and physical properties. Erbia and terbia were switched around, and for some time the two rare-earths were mixed up. The confusion was settled ostensibly in 1877 when the chemistry profession had the final say in the matter. However, they also got it wrong. What we know today as erbium was originally terbium, and terbium was erbium. [Pg.298]

Berkelium is a metallic element located in group 11 (IB) of the transuranic subseries of the actinide series. Berkelium is located just below the rare-earth metal terbium in the lanthanide series of the periodic table. Therefore, it has many chemical and physical properties similar to terbium ( Tb). Its isotopes are very reactive and are not found in nature. Only small amounts have been artificially produced in particle accelerators and by alpha and beta decay. [Pg.325]

The element was discovered in 1843 by Carl Gustav Mosander. He determined that the oxide, known as yttria, was actually a mixture of at least three rare earths which he named as yttria—a colorless oxide, erbia— a yellow oxide, and terbia— a rose-colored earth. Mosander separated these three oxides by fractional precipitation with ammonium hydroxide. Pure terbia was prepared by Urbain in 1905. The element was named terbium for its oxide, terbia, which was named after the Swedish town, Ytterby. [Pg.920]

Terbium occurs in nature associated with other rare earths. It is found in minerals xenotime, a rare earth phosphate consisting of 1% terbia and in euxenite, a complex oxide containing about 1.3% terbia. It also is found in cerite, monazite, and gadolinite. Also, the element has been detected in stellar matter. Abundance of terbium in the earth s crust is estimated to be 1.2 mg/kg. [Pg.920]

The rare earth oxides have a number of distinguishing properties important in catalytic applications. The oxides are basic O) compared to alumina, lanthanum oxide (La203) being the most basic. The oxides also have good thermal stability, a valuable characteristic in most industrial applications. Some rare earths including cerium, praseodymium, and terbium form non-stoichiomet-ric oxides ( ), an important property shared by many good oxidation catalysts. These mixed valence state compounds are typically polymorphic. [Pg.117]

It was noted earlier that the charge density of a narrow resonance band lies within the atoms rather than in the interstitial regions of the crystal in contrast to the main conduction electron density. In this sense it is sometimes said to be localized. However, the charge density from each state in the band is divided among many atoms and it is only when all states up to the Fermi level have contributed that the correct average number of electrons per atom is produced. In a rare earth such as terbium the 8 4f electrons are essentially in atomic 4f states and the number of 4f electrons per atom is fixed without reference to the Fermi level. In this case the f-states are also said to be locaUzed but in a very different sense. Unfortunately the two senses are often confused in literature on the actinides and, in order not to do so here, we shall refer to resonant states and Mott-localized states specifically. [Pg.266]

In the year 1886 Lecoq de Boisbaudran separated pure holmia into two earths, which he called holmia and dysprosta. He accomplished this by fractional precipitation, first with ammonium hydroxide and then with a saturated solution of potassium sulfate, and found that the constituents of impure holmium solutions precipitate in the following order terbium, dysprosium, holmium, and erbium (3, 37, 48). Lecoq de Boisbaudran never had an abundant supply of raw materials for his remarkable researches on the rare earths, and he once confided to Professor Urbain that most of his fractionations had been carried out on the marble slab of his fireplace (56). [Pg.717]

Van Uitert and Iida (55) suggested the applicability of the phonon-assisted-transfer mechanism to rare earth-rare earth energy exchange. They were able to correlate the emission intensity of the 5D0 level of trivalent europium or the5 D4 level of trivalent terbium with the closest, but definitely lower-lying, level observed for a second rare-earth ion. [Pg.215]

Dieke and Hall (88) measured the fluorescent lifetimes of some rare-earth salts. Their data were collected by an electronic-switch technique. Their results of the 5D4 state of terbium at 77°K and 293°K are ... [Pg.235]


See other pages where Terbium earths is mentioned: [Pg.250]    [Pg.540]    [Pg.547]    [Pg.547]    [Pg.292]    [Pg.366]    [Pg.394]    [Pg.412]    [Pg.280]    [Pg.33]    [Pg.273]    [Pg.369]    [Pg.10]    [Pg.496]    [Pg.300]    [Pg.22]    [Pg.32]    [Pg.200]    [Pg.706]    [Pg.578]    [Pg.348]    [Pg.154]    [Pg.236]    [Pg.236]    [Pg.237]   
See also in sourсe #XX -- [ Pg.411 , Pg.412 , Pg.413 , Pg.414 , Pg.415 , Pg.416 , Pg.417 , Pg.420 , Pg.421 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 , Pg.428 , Pg.429 , Pg.437 ]




SEARCH



Terbium

© 2024 chempedia.info