Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Holmium Element

Naturally occurring holmium has one stable isotope Ho with an atomic mass of [Pg.64]

930319 (u). There are 36 radioisotopes, with the most stable one being Ho, with a half-life of 4,570 years. AU other radioisotopes have half-lives shorter than 1.2 days. [Pg.64]


L. Holmia, for Stockholm). The special absorption bands of holmium were noticed in 1878 by the Swiss chemists Delafontaine and Soret, who announced the existence of an "Element X." Cleve, of Sweden, later independently discovered the element while working on erbia earth. The element is named after cleve s native city. Holmia, the yellow oxide, was prepared by Homberg in 1911. Holmium occurs in gadolinite, monazite, and in other rare-earth minerals. It is commercially obtained from monazite, occurring in that mineral to the extent of about 0.05%. It has been isolated by the reduction of its anhydrous chloride or fluoride with calcium metal. [Pg.193]

Pure holmium has a metallic to bright silver luster. It is relatively soft and malleable, and is stable in dry air at room temperature, but rapidly oxidizes in moist air and at elevated temperatures. The metal has unusual magnetic properties. Few uses have yet been found for the element. The element, as with other rare earths, seems to have a low acute toxic rating. [Pg.193]

Some nut trees accumulate mineral elements. Hickory nut is notable as an accumulator of aluminum compounds (30) the ash of its leaves contains up to 37.5% of AI2O2, compared with only 0.032% of aluminum oxide in the ash of the Fnglish walnut s autumn leaves. As an accumulator of rare-earth elements, hickory greatly exceeds all other plants their leaves show up to 2296 ppm of rare earths (scandium, yttrium, lanthanum, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). The amounts of rare-earth elements found in parts of the hickory nut are kernels, at 5 ppm shells, at 7 ppm and shucks, at 17 ppm. The kernel of the Bra2d nut contains large amounts of barium in an insoluble form when the nut is eaten, barium dissolves in the hydrochloric acid of the stomach. [Pg.272]

Heat of vaporization, 66 see also Vaporization Helium, 91 boiling point, 63 heat of vaporization, 105 interaction between atoms, 277 ionization energy, 268 molar volume, 60 on Sun, 447 source, 91 Hematite, 404 Hemin, structure of, 397 Hess s Law, 111 Heterogeneous, 70 systems and reaction rate, 126 n-Hexane properties, 341 Hibernation, 2 Hildebrand, Joel H.. 163 Holmium, properties, 412 Homogeneous, 70 systems and reaction rate, 126 Hydration, 313 Hydrazine, 46, 47, 231 Hydrides of third-row elements, 102 boiling point of. 315 Hydrocarbons, 340 unsaturated, 342... [Pg.460]

Tin hold the record with 10 stable isotopes. There are 19 so-called "pure elements" of which there is only one isotope. These anisotopic elements are beryllium, fluorine, sodium, aluminum, phosphorus, scandium, manganese, cobalt, arsenic, yttrium, niobium, rhodium, iodine, cesium, praseodymium, terbium, holmium, thulium, gold, and bismuth. [Pg.96]

Silver-colored, ductile metal that is attacked slowly by air and water. The element exhibits interesting magnetic properties. Found in television tubes. Laser material such as YAG (yttrium-aluminum garnet) doped with holmium (as well as chromium and thulium) can be applied in medicine, especially in sensitive eye operations. [Pg.146]

Some of the 105 elements now known to exist are very familiar to everyone because they are commonplace in our daily lives. Typical examples are iron, tin, and lead. Others, such as lanthanum, holmium, and praseodymium will probably be new to you. How many of the 105 elements can you actually name Gold Silver Copper Did you think of hydrogen and oxygen ... [Pg.19]

The compounds of the rare earth elements are usually highly colored. Neodymium s compounds are mainly lavender and violet, samarium s yellow and brown, holmium s yellow and orange, and erbium s rose-pink. Europium makes pink salts which evaporate easily. Dysprosium makes greenish yellow compounds, and ytterbium, yellow-gold. Compounds of lutetium are colorless, and compounds of terbium are colorless, dark brown, or black. [Pg.43]

Rare earth. One of a group of 15 chemically related elements lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. [Pg.412]

Dysprosium - the atomic number is 66 and the chemical symbol is Dy. The name derives from the Greek dysprositos for hard to get at , due to the difficulty in separating this rare earth element from a holmium mineral in which it was found. Discovery was first claimed by the Swiss chemist Marc Delafontaine in the mineral samarskite in 1878 and he called it philippia. Philippia was subsequently found to be a mixture of terbium and erbium. Dysprosium was later discovered in a holmium sample by the French chemist Paul-Emile Lecoq de Boisbaudron in 1886, who was then credited with the discovery. It was first isolated by the French chemist George Urbain in 1906. [Pg.8]

Holmium - the atomic number is 67 and the chemical symbol is Ho. The name derives from the Latin holmia for Stockholm . It was discovered in erbia earth by the Swiss chemist J. L. Soret in 1878, who referred to it as element X. It was later independently discovered by the Swedish chemist Per Theodor Cleve in 1879. It was first isolated in 1911 by Holmberg, who proposed the name holmium either to recognize the discoverer Per Cleve, who was from Stockholm or perhaps to establish his own name in history. [Pg.11]

Holmium is a crystal-like, solid rare-earth with a metaUic luster. It is one of the more scarce elements of the lanthanide series. It is soft, hke lead, and can be hammered and pounded into thin sheets. [Pg.296]

Holmium is the 12th most abundant of the rare-earths found in the Earths crust. Although it is the 50th most abundant element on Earth, it is one of the least abundant lanthanide metals. It is found in gadolinite and the monazite sands of South Africa and Austraha and in the beach sands of Florida and the Carolinas in the United States. Monazite sand contains about a 50% mixture of the rare-earths, but only 0.05% by weight is holmium. Today, small quantities of holmium are produced by the ion-exchange process. [Pg.296]

In the 1800s chemists searched for new elements by fractionating the oxides of rare-earths. Carl Gustaf Mosander s experiments indicated that pure ceria ores were actually contaminated with oxides of lanthanum, a new element. Mosander also fractionated the oxides of yttria into two new elements, erbium and terbium. In 1878 J. Louis Soret (1827—1890) and Marc Delafontaine (1837-1911), through spectroscopic analysis, found evidence of the element holmium, but it was contaminated by the rare-earth dysprosia. Since they could not isolate it and were unable to separate holmium as a pure rare-earth, they did not receive credit for its discovery. [Pg.296]

The first isotope of this element having mass number 253 and half-life 20 days was detected in 1952 in the Pacific in debris from the first thermonuclear explosion. The isotope was an alpha emitter of 6.6 MeV energy, chemically analogous to the rare earth element holmium. Isotope 246, having a half-life 7.3 minutes, was synthesized in the Lawrence Berkeley Laboratory cyclotron in 1954. The element was named Einsteinium in honor of Albert Einstein. Only microgram amounts have been synthesized. The element has high specific alpha activities. It may be used as a tracer in chemical studies. Commercial applications are few. [Pg.292]

Soret and Delafontaine identified holmium in 1878 by examination of its spectrum. The following year, Cleve separated its oxide from Marignac s erbia, a mixture of erbium, holmium and thulium oxides. He named this element Holmium, after his native town Holmia (Stockholm). The metal was produced in 1934 by Klemm and Bommer. [Pg.338]

Holmium is obtained from monazite, bastnasite and other rare-earth minerals as a by-product during recovery of dysprosium, thulium and other rare-earth metals. The recovery steps in production of all lanthanide elements are very similar. These involve breaking up ores by treatment with hot concentrated sulfuric acid or by caustic fusion separation of rare-earths by ion-exchange processes conversion to halide salts and reduction of the hahde(s) to metal (See Dysprosium, Gadolinium and Erbium). [Pg.339]

Of the remaining elements such as holmium, erbium, thulium ytterbium and lutetium it is unfortunately true that their relatively low abundance coupled with high cost has tended to preclude their use in applications outside of the laboratory. [Pg.174]

After the brilliant researches of Bunsen and Kirchhoff had paved the way, other new elements were soon revealed by the spectroscope. Among these may be mentioned thallium, indium, gallium, helium, ytterbium, holmium, thulium, samarium, neodymium, praseodymium, and lutetium. [Pg.634]

Even more striking in the old tooth is the abundance of rare earths (dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) and the elements tantalum, tungsten, gold, thorium, and uranium. Rare earth minerals are found in Scandinavia (in fact, many rare earth elements were discovered there), but what were they used for Did people prepare food with them Did they somehow get into the food chain ... [Pg.453]

B. Evans, Assistant Chemist. Rare-Earth Information Center. Energy itnd Mineral Resources Research Institute. Iowa Slate University. Ames. I,A. http //www.cxternal.ameslab.gov/. Cerium Dysprosium Erbium Europium Gadolinium Holmium Lanthanum Lutetium Neodymium Rare-Earth Elements and Metals Praseodymium Samarium Scandium Terbium Thulium Ytterbium and Yttrium Daniel F. Farkas, Oregon State University. Corvallis. OR. http // oregonstate.edu/. Food Processing... [Pg.1839]

The lanthanide elements were once known as the rare earths. Lanthanides, however, are not particularly rare. Holmium, one of the less common lanthanides, is still 20 times more abundant than silver on Earth. The rare earth name comes instead from how difficult it was for early chemists to separate all of the lanthanides from one another. Because these elements add electrons to an inner shell, they all show the same face to other elements. This makes them all react very similarly with other elements, and it can be tricky to tell them apart. [Pg.57]


See other pages where Holmium Element is mentioned: [Pg.64]    [Pg.62]    [Pg.64]    [Pg.62]    [Pg.235]    [Pg.412]    [Pg.286]    [Pg.249]    [Pg.12]    [Pg.181]    [Pg.497]    [Pg.297]    [Pg.261]    [Pg.711]    [Pg.578]    [Pg.579]    [Pg.354]    [Pg.7]    [Pg.332]    [Pg.780]    [Pg.781]    [Pg.1420]    [Pg.1422]    [Pg.1840]    [Pg.57]    [Pg.122]    [Pg.34]    [Pg.66]    [Pg.132]    [Pg.209]   
See also in sourсe #XX -- [ Pg.7 , Pg.10 , Pg.31 , Pg.34 , Pg.96 ]




SEARCH



Holmium

© 2024 chempedia.info