Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature vacuum distillation unit

By approaching the refinery design from a crude oil perspective, the advantage of preseparation by stepwise condensation after HTFT synthesis was reduced. The refinery design included primary separation steps typically found in crude oil refineries, namely, an atmospheric distillation unit (ADU) that is followed by a vacuum distillation unit (VDU). Despite the design intent, the operation of these units, out of necessity, had to be different. The reboiler temperature of the ADU was... [Pg.348]

The atmospheric bottom, also known as reduced oil, is then sent to the vacuum unit where it is further separated into vacuum gas oil and vacuum residues. Vacuum distillation improves the separation of gas oil distillates from the reduced oil at temperatures less than those at which thermal cracking would normally take place. The basic idea on which vacuum distillation operates is that, at low pressure, the boiling points of any material are reduced, allowing various hydrocarbon components in the reduced crude oil to vaporize or boil at a lower temperature. Vacuum distillation of the heavier product avoids thermal cracking and hence product loss and equipment fouling. [Pg.10]

During the past several years such stills have been largely replaced by tube or pipe stills because of their lower initial cost, greater throughput, and economy of operation. A common type of operation utilizes a two-stage atmospheric and vacuum distillation unit (13). This type of operation has an important advantage—the asphaltic residue remains at the extreme temperature for only a fraction of a minute in the pipe stills as contrasted to several hours in shell-type stills. [Pg.265]

The process specifications on raw material speed through furnaces coils imposed the use of two or four parallel passes, e.g. the fumaees from the atmospherie distillation unit, vacuum distillation unit, catalytic reforming unit, coker unit, catalytic cracking unit. The conventional control structure of radiant section for a typical tubular furnace from the atmospheric distillation unit (output capacity 3.5 Mt/year) is presented in figure 1 [1]. Because the conventional temperature control system only controls one outlet temperature or in the best case the temperature of the mixing point, in current operations there are several situations [1, 2, 3] ... [Pg.447]

Low temperature, vacuum distillation oil reclamation systans can handle a variety of fluids, and are designed to remove water and other contantinants that cause oil to become a hazardous waste to the environment, and unable to be re-used. Generally, vacuum distillation should be performed at tiO C or below. The reason for this is that the oxidation rate doubles for every ll C increase in temperatures above 60°C. Oil reclaimers using distillation incorporate prefilters, final filters and controls in one-piece units. [Pg.330]

Vacuum Distillation - Heavier fractions from the atmospheric distillation unit that cannot be distilled without cracking under its pressure and temperature conditions are vacuum distilled. Vacuum distillation is simply the distillation of petroleum fractions at a very low pressure (0.2 to 0.7 psia) to increase volatilization and separation. In most systems, the vacuum inside the fractionator is maintained with steam ejectors and vacuum pumps, barometric condensers, or surface condensers. [Pg.85]

A mixture of 2-iodotoluene (8.78 g, 0.04 mol) and trimethyl phosphite (24.8 g, 0.20 mol) was placed in a 45-ml, double-jacketed silica reaction vessel. The mixture was degassed by flushing with dry nitrogen for 5 min and irradiated with a 450-watt Hanovia (Model 679A-10) high-pressure quartz mercury vapor lamp fitted with an aluminum reflector head. The lamp was placed 5 cm from the inner portion of the reaction vessel. The reaction temperature was maintained at 0°C by the circulation of coolant from a thermostatically controlled refrigeration unit. Irradiation was continued at this temperature for 24 h. At the end of this time, the volatile materials were removed with a water aspirator, and the residue was vacuum distilled (96 to 97°C/0.25 torr) to give the dimethyl 2-methylphenylphosphonate (7.28 g, 91%). [Pg.179]

Room-temperature solution polycondensation is used for the preparation of hexafluoroisopropylidene-unit-containing poly(azomethine)s. At the end of the reaction, the water liberated by the reaction is thoroughly taken off as an azeotrope by vacuum distillation to allow the reaction to go to completion. Among DMF, DMSO, HMPA, NMP, and m-cresol used as reaction solvents, m-cresol yields a polymer with higher reduced viscosity in higher yield. The reaction proceeds rapidly and is essentially completed in 30 min. [Pg.141]

The 65 per cent peroxide, previously stabilized by adding a small amount of phosphoric acid, is introduced at the rate of 9001 per hr. into a second distillation unit, similar to the first, for re-distillation. Here the process is continuous a4 no solid substances accumulate in the retort. A temperature of 75 °C is njaintained at an absolute pressure of 40 mni Hg. When equilibrium has been reached, the concentration of the liquid in the retort will be about 80 per cent b.w. H2O2 and in the vapour phase will be about 44 per cent b.w. H202. The distilled vapour enters the rectifying column, from where a condensate containing 56 per cent b.w. H202 is continually returned into the retort. Uncondensed water vapour is liquefied in a tubular aluminium condenser connected to a vacuum pump. [Pg.418]

Diphenyl disulfide. In a 100-mL, round-bottomed flask equipped with a magnetic stirrer are placed 11.0 g (10.25 ml, 0.1 mol) of benzenethiol and 50 mL of trifluoroethanol (Note 1). The mixture is stirred and cooled in an ice bath (Note 2) and 12.5 mL (3.73 g, 0.11 mol) of 30% aqueous hydrogen peroxide (Note 3) is added dropwise over a period of 15 min through an addition funnel. After completion of the addition, the ice bath is removed and the reaction mixture is allowed to stir at room temperature for 24 hr. Diphenyl disulfide is sparingly soluble in trifluoroethanol and precipitates out of solution. The solids are collected on a Buchner funnel and dried under vacuum to afford 10.6 g of diphenyl disulfide (97%) (Note 4). Sodium sulfite 2.52 g (0.02 mol) is added to the mother liquor to decompose the excess peroxide and the mixture is heated in a water bath at 50°C for 30 min. A starch iodide test is negative. The liquid is transferred to a 100-mL, round-bottomed flask, fitted with a distillation unit having a Vigreux column (5 cm). The flask is heated in an oil bath and the solvent is distilled to recover the trifluoroethanol (Note 5). [Pg.85]

The fatty acids are deaerated and distilled in a high-vacuum still. The fatty acids are deaerated to prevent darkening by oxidation during the process. The acids are charged at a controlled rate to the bottom of the high-vacuum still unit. The hot fatty acids are cooled down to room temperature into two parallel condensers prior to neutralization with 50% caustic soda in a high-speed mixer neutralizer. The fatty acids are converted into their corresponding sodium salts that form the soap. [Pg.129]


See other pages where Temperature vacuum distillation unit is mentioned: [Pg.95]    [Pg.7]    [Pg.7]    [Pg.400]    [Pg.1357]    [Pg.151]    [Pg.1102]    [Pg.202]    [Pg.85]    [Pg.213]    [Pg.217]    [Pg.218]    [Pg.219]    [Pg.288]    [Pg.52]    [Pg.15]    [Pg.156]    [Pg.6]    [Pg.202]    [Pg.267]    [Pg.135]    [Pg.187]    [Pg.190]    [Pg.499]    [Pg.40]    [Pg.213]    [Pg.217]    [Pg.218]    [Pg.219]    [Pg.187]    [Pg.190]    [Pg.499]    [Pg.3711]    [Pg.230]    [Pg.85]    [Pg.20]    [Pg.102]   
See also in sourсe #XX -- [ Pg.118 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 ]




SEARCH



Distillate temperature

Distillation temperature

Vacuum distillates

Vacuum distillation

Vacuum units

© 2024 chempedia.info