Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature iron and

At an elevated temperature, iron and manganese tungstates form a continuous solid solution series. Due to the fact that the temperature during mineral crystallization was sometimes below the limit of miscibility, ferberite and huebnerite can also be found side by side and not as a mixed crystal, as would be the case at correspondingly high temperatures. [Pg.70]

The properties of steel depend not only on its chemical composition but also on the heat treatment. At high temperatures, iron and carbon in steel combine to form iron carbide, FesC, called cementite ... [Pg.810]

XAFS studies of the crystal chemistry of kaolinites and low temperature iron and manganese hydroxides (Muller et al. 1995)... [Pg.21]

When iron is alloyed with carbon, which fits into holes among the iron atoms to form the interstitial alloy carbon steel, the situation becomes even more complex. For example, the temperature at which a-iron changes to austentite is lowered by about 200°C. Also, at high temperatures iron and carbon react by an endothermic reversible reaction to form an iron carbide called cementite ... [Pg.994]

Frenier, W. W. (1992) Process and Composition for Inhibiting High-Temperature Iron and Steel Corrosion, US Patent 5096618, p. 3. [Pg.486]

Colourless crystals m.p. 50 C, b.p. 301 C. Basic and forms sparingly soluble salts with mineral acids. Prepared by the reduction of 1-nitronaphthalene with iron and a trace of hydrochloric acid or by the action of ammonia upon l-naphlhol at a high temperature and pressure. [Pg.270]

Titanium is important as an alloying agent with aluminum, molybdenum, manganese, iron, and other metals. Alloys of titanium are principally used for aircraft and missiles where lightweight strength and ability to withstand extremes of temperature are important. [Pg.76]

Gobalt is a brittle, hard metal, resembling iron and nickel in appearance. It has a metallic permeability of about two thirds that of iron. Gobalt tends to exist as a mixture of two allotropes over a wide temperature range. The transformation is sluggish and accounts in part for the wide variation in reported data on physical properties of cobalt. [Pg.83]

If poUed, most aquaculturists would probably indicate a preference for well water. Both freshwater and saline wells are common sources of water for aquaculture. The most commonly used pretreatments of well water include temperature alteration (either heating or cooling) aeration to add oxygen or to remove or oxidize such substances as carbon dioxide, hydrogen sulfide, and iron and increasing salinity (in mariculture systems). Pretreatment may also include adjusting pH, hardness, and alkalinity through the appHcation of appropriate chemicals. [Pg.19]

The ETEE copolymer can be cross-linked by radiation (30), despite the high content of tetrafluoroethylene units. Cross-linking reduces plasticity but enhances high temperature properties and nondrip performance. The irradiated resia withstands a 400°C solder iron for 10 min without noticeable effect. [Pg.369]

Standard Wrought Steels. Steels containing 11% and more of chromium are classed as stainless steels. The prime characteristics are corrosion and oxidation resistance, which increase as the chromium content is increased. Three groups of wrought stainless steels, series 200, 300, and 400, have composition limits that have been standardized by the American Iron and Steel Institute (AlSl) (see Steel). Figure 8 compares the creep—mpture strengths of the standard austenitic stainless steels that are most commonly used at elevated temperatures (35). Compositions of these steels are Hsted in Table 3. [Pg.117]

The mechanism and rate of hydrogen peroxide decomposition depend on many factors, including temperature, pH, presence or absence of a catalyst (7—10), such as metal ions, oxides, and hydroxides etc. Some common metal ions that actively support homogeneous catalysis of the decomposition include ferrous, ferric, cuprous, cupric, chromate, dichromate, molybdate, tungstate, and vanadate. For combinations, such as iron and... [Pg.471]

SL/RN Process. In the SL/RN process (Fig. 4), sized iron ore, coal, and dolomite are fed to the rotary kiln wherein the coal is gasified and the iron ore is reduced. The endothermic heat of reduction and the sensible energy that is required to heat the reactants is provided by combustion of volatiles and carbon monoxide leaving the bed with air introduced into the free space above the bed. The temperature profile in the kiln is controlled by radial air ports in the preheat zone and axial air ports in the reduction zone. Part of the coal is injected through the centerline of the kiln at the discharge end. The hot reduced iron and char is discharged into an indirect rotary dmm cooler. The cooled product is screened and magnetically separated to remove char and ash. [Pg.429]

Reoxidation occurs when the metallic iron in hot DRI reacts with oxygen in the air to form either Ee O or Ee202. The reaction continues as long as the DRI remains hot and sufficient oxygen is avadable. Because reoxidation reactions are exothermic and DRI is a good insulator, it is possible that once reoxidation begins inside a pde, the DRI temperature increases and accelerates the reoxidation rate. Although the inner core of the pde may reach temperatures up to the fusion point of iron, the maximum temperature of the outer parts of the pde will be much lower because of heat dissipation. [Pg.431]

Metallurgy. The strong affinity for oxygen and sulfur makes the rare-earth metals useflil in metallurgy (qv). Mischmetal acts as a trap for these Group 16 (VIA) elements, which are usually detrimental to the properties of steel (qv) or cast iron (qv). Resistance to high temperature oxidation and thermomechanical properties of several metals and alloys are thus significantly improved by the addition of small amounts of mischmetal or its siUcide (16,17). [Pg.547]

Magnesium nitrate is prepared by dissolving magnesium oxide, hydroxide, or carbonate in nitric acid, followed by evaporation and crystallization at room temperature. Impurities such as calcium, iron, and aluminum are precipitated by pretreatment of the solution with slight excess of magnesium oxide, followed by filtration. Most magnesium nitrate is manufactured and used on site in other processes. [Pg.352]

Iron (qv) exists in three aHotropic modifications, each of which is stable over a certain range of temperatures. When pure iron free2es at 1538°C, the body-centered cubic (bcc) 5-modification forms, and is stable to 1394°C. Between 1394 and 912°C, the face-centered cubic (fee) y-modification exists. At 912°C, bcc a-iron forms and prevails at all lower temperatures. These various aHotropic forms of iron have different capacities for dissolving carbon. y-Iron can contain up to 2% carbon, whereas a-iron can contain a maximum of only about 0.02% C. This difference in solubHity of carbon in iron is responsible for the unique heat-treating capabilities of steel The soHd solutions of carbon and other elements in y-iron and a-iron are caHed austenite and ferrite, respectively. [Pg.236]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

Selectivity is primarily a function of temperature. The amount of by-products tends to increase as the operating temperature is raised to compensate for declining catalyst activity. By-product formation is also influenced by catalyst impurities, whether left behind during manufacture or otherwise introduced into the process. Alkaline impurities cataly2e higher alcohol production whereas acidic impurities, as well as trace iron and nickel, promote heavier hydrocarbon formation. [Pg.276]

In addition, molybdenum has high resistance to a number of alloys of these metals and also to copper, gold, and silver. Among the molten metals that severely attack molybdenum are tin (at 1000°C), aluminum, nickel, iron, and cobalt. Molybdenum has moderately good resistance to molten zinc, but a molybdenum—30% tungsten alloy is practically completely resistant to molten zinc at temperatures up to 800°C. Molybdenum metal is substantially resistant to many types of molten glass and to most nonferrous slags. It is also resistant to hquid sulfur up to 440°C. [Pg.465]

G. E. Vander Voort, ed.. Atlas of Time-Temperature Diagramsfor Irons and Steels, ASM International, 1991. [Pg.468]

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

Another anomalous property of some nickel—iron aHoys, which are caHed constant-modulus aHoys, is a positive thermoelastic coefficient which occurs in aHoys having 27—43 wt % nickel. The elastic moduH in these aHoys increase with temperature. UsuaHy, and with additions of chromium, molybdenum, titanium, or aluminum, the constant-modulus aHoys are used in precision weighing machines, measuring devices, and osciHating mechanisms (see Weighing AND proportioning). [Pg.6]


See other pages where Temperature iron and is mentioned: [Pg.4]    [Pg.424]    [Pg.4]    [Pg.424]    [Pg.378]    [Pg.392]    [Pg.146]    [Pg.468]    [Pg.123]    [Pg.15]    [Pg.124]    [Pg.385]    [Pg.414]    [Pg.43]    [Pg.321]    [Pg.366]    [Pg.368]    [Pg.377]    [Pg.104]    [Pg.188]    [Pg.211]    [Pg.214]    [Pg.222]    [Pg.225]    [Pg.7]    [Pg.7]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 ]




SEARCH



© 2024 chempedia.info