Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature dynamic mechanical analysis

A reversible succession of order-order and order-disorder transition was observed for a poly(ethylene-a/f-propylene)- -poly(ethylene-co-butylene)-b-polystyrene terpolymer, which shows at room temperature non-hexagonally packed PS cylinders. Upon heating, this system reorganizes to a hexagonally packed one, and at higher temperatures dynamic-mechanical analysis indicates the transition to the disordered state [73],... [Pg.161]

Influence of temperature on the curing of epoxide systems The rate of curing of the epoxide formulation based on cycloaliphatic diepoxides also increases with increasing curing temperature. Dynamic mechanical analysis carried out on the cured films of a model epoxide adhesive also showed an increase in the glass transition temperature with increasing curing temperature. [Pg.41]

Glass-transition temperatures are commonly determined by differential scanning calorimetry or dynamic mechanical analysis. Many reported values have been measured by dilatometric methods however, methods based on the torsional pendulum, strain gauge, and refractivity also give results which are ia good agreement. Vicat temperature and britde poiat yield only approximate transition temperature values but are useful because of the simplicity of measurement. The reported T values for a large number of polymers may be found ia References 5, 6, 12, and 13. [Pg.260]

Dynamic mechanical analysis provides a useful technique to study the cure kinetics and high temperature mechanical properties of phenoHc resins. The volatile components of the resin do not affect the scan or limit the temperature range of the experiment. However, uncured samples must be... [Pg.301]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

In a similar fashion. Thermally Stimulated Current spectrometry (TSC) makes use of an appHed d-c potential that acts as the stress to orient dipoles. The temperature is then lowered to trap these dipoles, and small electrical currents are measured during heating as the dipoles relax. The resulting relaxation maps have been related to G and G" curves obtained by dynamic mechanical analysis (244—246). This technique, long carried out only in laboratory-built instmments, is available as a commercial TSC spectrometer from Thermold Partners L.P., formerly Solomat Instmments (247). [Pg.194]

Thermal Properties. Spider dragline silk was thermally stable to about 230°C based on thermal gravimetric analysis (tga) (33). Two thermal transitions were observed by dynamic mechanical analysis (dma), one at —75° C, presumed to represent localized mobiUty in the noncrystalline regions of the silk fiber, and the other at 210°C, indicative of a partial melt or a glass transition. Data from thermal studies on B. mori silkworm cocoon silk indicate a glass-transition temperature, T, of 175°C and stability to around 250°C (37). The T for wild silkworm cocoon silks were slightly higher, from 160 to 210°C. [Pg.78]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

Thermal and thermomechanical analyses44 are very important for determining die upper and lower usage temperature of polymeric materials as well as showing how they behave between diose temperature extremes. An especially useful thermal technique for polyurethanes is dynamic mechanical analysis (DMA).45 Uiis is used to study dynamic viscoelastic properties and measures die ability to... [Pg.241]

Glass transition temperature (Tg), measured by means of dynamic mechanical analysis (DMA) of E-plastomers has been measured in binary blends of iPP and E-plastomer. These studies indicate some depression in the Tg in the binary, but incompatible, blends compared to the Tg of the corresponding neat E-plastomer. This is attributed to thermally induced internal stress resulting from differential volume contraction of the two phases during cooling from the melt. The temperature dependence of the specific volume of the blend components was determined by PVT measurement of temperatures between 30°C and 270°C and extrapolated to the elastomer Tg at —50°C. [Pg.175]

Gel time values of the three systems measured as abrupt change in the slope of G (t) under isothermal curing conditions show that gelation occurs earlier in PWE system at all temperatures considered as shown in Table 11.27. ETPI behaves like a catalyst for the primary epoxy-amino reaction which dominates the cure until vitrihcation occurs. Dynamic mechanical analysis and dielectric spectroscopic analysis carried out by the authors also confirm the above conclusions. [Pg.342]

An associated technique which links thermal properties with mechanical ones is dynamic mechanical analysis (DMA). In this, a bar of the sample is typically fixed into a frame by clamping at both ends. It is then oscillated by means of a ceramic shaft applied at the centre. The resonant frequency and the mechanical damping exhibited by the sample are sensitive measurements of the mechanical properties of a polymer which can be made over a wide range of temperatures. The effects of compositional changes and methods of preparation can be directly assessed. DMA is assuming a position of major importance in the study of the physico-chemical properties of polymers and composites. [Pg.495]

ASTM E 1640-99, ASTM Book of Standards 2002. Standard Test Method for Assignment of the Glass Transition Temperature by Dynamic Mechanical Analysis . ASTM International, Conshohocken, PA. [Pg.90]

Electron irradiation causes chain scission and crosslinking in polymers. Both of these phenomena directly affect the glass transition temperature (Tg) of the materials. Thermomechanical (TMA) and dynamic-mechanical analysis (DMA) provide information about the Tg region and its changes due to radiation damage. Therefore, DMA and TMA were performed on all irradiated materials. [Pg.228]

Figure 8.1 shows dynamic mechanical analysis (DMA) data for an unfilled and 30 % glass-filled PBT. Note the sharply higher modulus ( ) in the glass-filled blend at all temperatures. [Pg.305]

Bauer, Denneler, and Wilert-Porada also studied the influence of temperature (30-120°C) and humidity (0 - 100%) on the mechanical properties of Nation 117 membrane via dynamic mechanical analysis (DMA). The mechanical behavior of Nation membranes in a humid atmosphere was observed to differ significantly from that in dry atmosphere, and the influence of water on the mechanical properties of the acid form of Nation was found to be complex. The maximum of the storage modulus ( ) as a function of humidity was shifted to higher humidity values with increasing temperature. [Pg.130]

Cable and Moore performed DMA (dynamic mechanical analysis) studies of various Nafion membranes including the acid form. ° A tan <3 peak with maximum at 110 °C, referred to as Tg , was seen, and there is a suggestion of a shoulder on the low temperature side that might arise from another mechanism. As this membrane was dried at only 60 °C, the possibility of residual water incorporation exists. Moore and Cable concluded that the a relaxation was due to chain motions within and/or near the ion-rich domains and that the ji relaxation was... [Pg.336]

Fig. 5 4. Glass transition temperature, Tg, measured by dynamic mechanical analysis as a function of wt% epoxy-compatible PPG size. After Drown et al. (1991). Fig. 5 4. Glass transition temperature, Tg, measured by dynamic mechanical analysis as a function of wt% epoxy-compatible PPG size. After Drown et al. (1991).
Thermal analysis, moisture uptake and dynamic mechanical analysis was also accomplished on cured specimens. Thermal analysis parameters used to study cured specimens are the same as those described earlier to test resins. The moisture uptake in cured specimens was monitored by immersing dogbone shaped specimens in 71 C distilled water until no further weight gain is observed. A dynamic mechanical scan of a torsion bar of cured resin was obtained using the Rheometrics spectrometer with a temperature scan rate of 2°C/minute in nitrogen at a frequency of 1.6Hz. The following sections describe the results obtained from tests run on the two different BCB resin systems. Unless otherwise noted all tests have been run as specified above. [Pg.369]


See other pages where Temperature dynamic mechanical analysis is mentioned: [Pg.115]    [Pg.115]    [Pg.229]    [Pg.115]    [Pg.151]    [Pg.115]    [Pg.115]    [Pg.229]    [Pg.115]    [Pg.151]    [Pg.299]    [Pg.301]    [Pg.151]    [Pg.151]    [Pg.49]    [Pg.60]    [Pg.914]    [Pg.712]    [Pg.138]    [Pg.298]    [Pg.410]    [Pg.60]    [Pg.63]    [Pg.792]    [Pg.601]    [Pg.276]    [Pg.306]    [Pg.84]    [Pg.94]    [Pg.108]    [Pg.132]    [Pg.348]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Analysis temperature

Dynamic analysis

Dynamic mechanisms

Dynamical mechanical

Mechanical analysis

Temperature, dynamics

© 2024 chempedia.info