Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature diluents

In recent years, there have been increasing reports on the study of the melting and crystallization behaviors of PE under high pressure by addition of other components. Nakafuku et al. [144-147] have reported that some high melting temperature diluents such as 1-, 2-, 4-, 5-tetrachlorobenzene I-, 3-, 5-tribromobenzene hexamethylbenzene and tetracontane affect the melting and crystallization processes, the phase transition, and... [Pg.312]

A high water-in-oil content near the oil/water interface in a separation test in the best case can indicate some percentage of off specification oil and in the worst case indicates a propensity for rag layer formation which often results in process upsets. The rag layer is a gel-like emulsion that forms at the interface of the oil and water in a separation vessel. It can be an od-in-water and/or a water-in-oil dispersion and often shows multiple emulsions. In oil separation vessels, these layers are often allowed to accumulate and are pumped to separate separation processes. Rag layer emulsion separation is one of the most difficult oil-water demulsification problems. When they can be separated at all, they usually are demulsifier intensive and often require elevated temperatures, diluents, or both. This is due to the concentration of emulsion stabilizing components that have built up in the separation vessel where the rag layer accumulates. [Pg.57]

Diluents/solvents affect the crystallization of polymers in several ways. One is that they lower the concentration of the polymer, limiting the rate of nucleation and growth. The other is that they lower the equilibrium dissolution temperature. Diluents/solvents can, therefore, be used to get controlled conditions for PSC with very regular crystal structures. Just as with composites cooled from a melt, CNTs can be used to nucleate PSCs in dilute and semi-dilute solutions as well. The precise control offered by dilution allows CNTs to crystallize polymer at temperatures above the homogeneous nucleation temperature. In some cases, this results in the transcrystallinity discussed in the last section, and in other... [Pg.146]

The diffusion of a small penetrant molecule (molecular weight of the order of 200) in trace amounts through a rubbery polymer is primarily determined by the mobility of the polymer molecules, and the translational friction coefficient of the foreign molecule cein be correlated with the monomeric friction coefficient of the polymer. In a series of studies with radioactively tagged penetrants, the effects of temperature, diluent, polymer structure, thermodynamic compatibility, size of penetrant molecule, and other variables have been investigated . Results of this relatively simple experiment can be used to make predictions of viscoelastic behavior . [Pg.66]

This is an endothermic reaction accompanied by an increase in the number of moles. High conversion is favored by high temperature and low pressure. The reduction in pressure is achieved in practice by the use of superheated steam as a diluent and by operating the reactor below atmospheric pressure. The steam in this case fulfills a dual purpose by also providing heat for the reaction. [Pg.44]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

The diluent gives the flavor a physical fixation. Relatively high boiling point materials are used in the diluent to make the flavor less heat labile. They are included when a flavor is to be used at temperatures above the boiling point of water examples include vegetable oils and isopropyl myristate. [Pg.16]

Fig. 3. Pressure required for ignition of mixtures of acetylene and a diluent gas (air, oxygen, butane, propane, methane, carbon monoxide, ethylene, oil gas, nitrogen, helium, or hydrogen) at room temperature. Initiation fused resistance wire. Container A, 50 mm dia x 305 mm length (73) B,... Fig. 3. Pressure required for ignition of mixtures of acetylene and a diluent gas (air, oxygen, butane, propane, methane, carbon monoxide, ethylene, oil gas, nitrogen, helium, or hydrogen) at room temperature. Initiation fused resistance wire. Container A, 50 mm dia x 305 mm length (73) B,...
Decomposition Hazards. The main causes of unintended decompositions of organic peroxides are heat energy from heating sources and mechanical shock, eg, impact or friction. In addition, certain contaminants, ie, metal salts, amines, acids, and bases, initiate or accelerate organic peroxide decompositions at temperatures at which the peroxide is normally stable. These reactions also Hberate heat, thus further accelerating the decomposition. Commercial products often contain diluents that desensitize neat peroxides to these hazards. Commercial organic peroxide decompositions are low order deflagrations rather than detonations (279). [Pg.132]

In the propane process, part of the propane diluent is allowed to evaporate by reducing pressure so as to chill the slurry to the desired filtration temperature, and rotary pressure filters are employed. Complex dewaxing requires no refrigeration, but depends on the formation of a soHd urea—/ -paraffin complex which is separated by filtration and then decomposed. This process is used to make low viscosity lubricants which must remain fluid at low temperatures (refrigeration, transformer, and hydraulic oils) (28). [Pg.211]

Other crystallization parameters have been determined for some of the polymers. The dependence of the melting temperature on the crystallization temperature for the orthorhombic form of POX (T = 323K) and both monoclinic (T = 348K) and orthorhombic (T = 329K) modifications of PDMOX has been determined (284). The enthalpy of fusion, Aff, for the same polymers has been determined by the polymer diluent method and by calorimetry at different levels of crystallinity (284). for POX was found to be 150.9 J/g (36.1 cal/g) for the dimethyl derivative, it ranged from 85.6 to 107.0 J/g (20.5—25.6 cal/g). Numerous crystal stmcture studies have been made (285—292). Isothermal crystallization rates of POX from the melt have been determined from 19 to —50 C (293,294). Similar studies have been made for PDMOX from 22 to 44°C (295,296). [Pg.368]

How closely a design approaches minimum energy is largely determined by the raw materials and catalyst system chosen. However, if reaction temperature, residence time, and diluent are the only variables, there is still a tremendous opportunity to influence energy use via the effect on yield. Even given none of these, there is stiU wide freedom to optimize the heat interchange system (see Reactor technology). [Pg.83]

Sucralose is quite stable to heat over a wide range of pH. However, the pure white dry powder, when stored at high temperature, can discolor owing to release of small quantities of HCl. This can be remedied by blending it with maltodextrin (93) and other diluents. The commercial product can be a powder or a 25% concentrate in water, buffered at pH 4.4. The latter solution may be stored for up to one year at 40°C. At lower pH, there is minimal decomposition. For example, in a pH 3.0 cola carbonated soft drink stored at 40°C, there is less than 10% decomposition after six months. The degradation products are reported to be the respective chlorinated monosaccharides, 4-chloro-4-deoxy-galactose (13) and l,6-dichloro-l,6-dideoxy-fmctose (14) (94). [Pg.279]

Molten sodium is injected into the retort at a prescribed rate and the temperature of the system is controlled by adjusting the furnace power or with external cooling. The variables that control the quaUty and physical properties of the powder are the reduction temperature and its uniformity, diluent type and concentration, sodium feed rate, and stirring efficiency. Optimizing a variable for one powder attribute can adversely affect another property. For example, a high reduction temperature tends to favor improved chemical quaUty but lowers the surface area of the powder. [Pg.327]

If the viscous bitumen in a tar sand formation can be made mobile by an admixture of either a hydrocarbon diluent or an emulsifying fluid, a relatively low temperature secondary recovery process is possible (emulsion steam drive). If the formation is impermeable, communication problems exist between injection and production weUs. However, it is possible to apply a solution or dilution process along a narrow fracture plane between injection and production weUs. [Pg.356]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

Acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, ethyl acetate, and tetrahydrofuran are solvents for vinyhdene chloride polymers used in lacquer coatings methyl ethyl ketone and tetrahydrofuran are most extensively employed. Toluene is used as a diluent for either. Lacquers prepared at 10—20 wt % polymer sohds in a solvent blend of two parts ketone and one part toluene have a viscosity of 20—1000 mPa-s (=cP). Lacquers can be prepared from polymers of very high vinyhdene chloride content in tetrahydrofuran—toluene mixtures and stored at room temperature. Methyl ethyl ketone lacquers must be prepared and maintained at 60—70°C or the lacquer forms a sohd gel. It is critical in the manufacture of polymers for a lacquer apphcation to maintain a fairly narrow compositional distribution in the polymer to achieve good dissolution properties. [Pg.442]

Ethylene oxide is produced in large, multitubular reactors cooled by pressurized boiling Hquids, eg, kerosene and water. Up to 100 metric tons of catalyst may be used in a plant. Typical feed stream contains about 30% ethylene, 7—9% oxygen, 5—7% carbon dioxide the balance is diluent plus 2—5 ppmw of a halogenated moderator. Typical reactor temperatures are in the range 230—300°C. Most producers use newer versions of the Shell cesium-promoted silver on alumina catalyst developed in the mid-1970s. [Pg.202]


See other pages where Temperature diluents is mentioned: [Pg.175]    [Pg.316]    [Pg.255]    [Pg.357]    [Pg.324]    [Pg.324]    [Pg.116]    [Pg.322]    [Pg.175]    [Pg.316]    [Pg.255]    [Pg.357]    [Pg.324]    [Pg.324]    [Pg.116]    [Pg.322]    [Pg.1009]    [Pg.422]    [Pg.11]    [Pg.15]    [Pg.149]    [Pg.228]    [Pg.136]    [Pg.136]    [Pg.401]    [Pg.413]    [Pg.362]    [Pg.200]    [Pg.126]    [Pg.508]    [Pg.228]    [Pg.408]    [Pg.479]    [Pg.516]    [Pg.144]    [Pg.327]    [Pg.418]    [Pg.520]    [Pg.366]    [Pg.368]    [Pg.50]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Diluents

Diluents and Temperature Dependence

Glass-transition temperature diluent

Polymer-diluent mixtures melting temperatures

Polymer-diluent mixtures temperature

Polymer-diluent mixtures temperature dependence

© 2024 chempedia.info