Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers separation methods

SEC is presently the most important method for separation and moleeular characterization of synthetic polymers. The method enjoys enormous popularity and most institutions involved in research, production, testing and apphea-tion of synthetie polymers are equipped at least with a simple SEC instrument. Size exclusion chromatograms are often directly transformed into the molar mass dispersity functions (compare section 11.3.3, Molar Mass Dispersity). Often, the molar mass data presented are not absolute, beeause polystyrene or other polymer standards distinct from polymer under study have been employed for the column calibration (see sections 11.6.3 and 11.7.3.1). Still, the data equivalent to the polymer applied to the column cahbration, more or less precisely represent the tendencies of molar mass evolution in the course of building-up or decomposition polyreactions. [Pg.284]

A more recent international journal. Journal of Carbohydrate Chemistry, was introduced in 1982. It requires camera-ready copy and is devoted primarily to the organic and physical chemistry of carbohydrates, such as novel synthetic methods mechanisms involved in carbohydrate reactions uses of carbohydrates in the synthesis of natural products, drugs, and antibiotics use of carbohydrates as synthetic reagents separation methods as applied to carbohydrate reactions and synthesis spectroscopic and crystallographic structure studies of carbohydrates molecular modeling studies and the chemistry of carbohydrate polymers, oligosaccharides, polysaccharides, and glycoconjugates. [Pg.40]

The comparison among these techniques is tabulated in Table 22.1. In summary, HdC is a separation technique with low selectivity however, the efficiency can be very high. Especially in PCHdC, high analysis speed can be achieved over a wide MW range. ThFFF performs best for the separation of high MW samples. SEC has an intermediate selectivity between FldC and ThFFF. Practicality makes SEC the most suitable method for the common MW range of synthetic polymers. SEC is by far the most commonly used technique for molecular weight distribution determinations. However, HdC is better for the fast analysis purpose. [Pg.608]

The application areas for LC-MS, as will be illustrated later, are diverse, encompassing both qualitative and quantitative determinations of both high-and low-molecular-weight materials, including synthetic polymers, biopolymers, environmental pollutants, pharmaceutical compounds (drugs and their metabolites) and natural products. In essence, it is used for any compounds which are found in complex matrices for which HPLC is the separation method of choice and where the mass spectrometer provides the necessary selectivity and sensitivity to provide quantitative information and/or it provides structural information that cannot be obtained by using other detectors. [Pg.187]

Apart from paints, electrokinetic separations find limited application for synthetic polymers [905], mainly because of solvent compatibility (CE is mostly an aqueous technique) and competition of SEC (reproducibility). Reasons in favour of the use of CE-like methods for polymer analysis are speed, sample throughput and low solvent consumption. Nevertheless, CE provides some interesting possibilities for polymer separation. Electrokinetic methods have been developed based on differences in ionisation, degree of interaction with solvent constituents, and molecular size and conformation. [Pg.277]

Owing to the fact that organic substances have to be separated from a complex sample, transferred to the mass spectrometer target and desorbed, it seems impossible so far to analyse cross-linked binding media from artwork (e.g. dried oil, aged proteins, cross-linked synthetic polymers). Application of classical methods of sample treatment for... [Pg.159]

Gel electrophoresis is widely used in the routine analysis and separation of many well-known biopolymers such as proteins or nucleic acids. Little has been reported concerning the use of this methodology for the analysis of synthetic polymers, undoubtedly since in many cases these polymers are not soluble in aqueous solution - a medium normally used for electrophoresis. Even for those water-soluble synthetic polymers, the broad molecular weight dispersities usually associated with traditional polymers generally preclude the use of electrophoretic methods. Dendrimers, however, especially those constructed using semi-controlled or controlled structure synthesis (Chapters 8 and 9), possess narrow molecular weight distribution and those that are sufficiently water solubile, usually are ideal analytes for electrophoretic methods. More specifically, poly(amidoamine) (PAMAM) and related dendrimers have been proven amendable to gel electrophoresis, as will be discussed in this chapter. [Pg.239]

SEC is presently the most important method for separation and molecular characterization of synthetic polymers. The exclusion chromatography of lipophilic macromolecules is called also gel permeation chromatography (GPC) and for hydrophilic species, the term gel filtration chromatography (GFC) is often applied. It seems that the term gel permeation chromatography is returning probably because the abbreviation SEC means also Securities and Exchange Commission. [Pg.468]

High-performance liquid chromatography of synthetic polymers is a set of very useful experimental procedures allowing separation and molecular characterization of many kinds of macromolecules. All particular members of this group of methods and their mutual combinations necessitate further research. Even the oldest and likely the simplest method of polymer HPLC, namely SEC, which is often erroneously considered a mature procedure, deserves further intensive development. It is hoped that the basic information presented in this chapter will help understand not only the principles but also the challenges of polymer HPLC. [Pg.497]

Many natural polymers are monodisperse (all molecules have the same molecular weight). In this case the ullracentrifuge which separates materials according to their effective density in solutions is a most powerful tool for molecular weight determination. With poly-disperse materials, the interpretation of ultracentrifuge results becomes more complex and widespread application of this method to synthetic polymer molecular weighl determination has not yet been achieved... [Pg.1349]

Such precise control of porous properties is expected to be very useful in the design of specialized CEC columns for separation in modes other than reversed-phase. For example, size exclusion chromatography (SEC) is an isocratic separation method that relies on differences in the hydrodynamic volumes of the analytes. Because all solute-stationary phase interactions must be avoided in SEC, solvents such as pure tetrahydrofuran are often used as the mobile phase for the analysis of synthetic polymers, since they dissolve a wide range of structures and minimize interactions with the chromatographic medium. Despite the reported use of entirely non-aqueous eluents in both electrophoresis and CEC [65], no appreciable flow through the methacrylate-based monoliths was observed using pure tetrahydrofuran as the mobile phase. However, a mixture of 2% water and tetrahydrofuran was found to substan-... [Pg.235]

The third main class of separation methods, the use of micro-porous and non-porous membranes as semi-permeable barriers (see Figure 2c) is rapidly gaining popularity in industrial separation processes for application to difficult and highly selective separations. Membranes are usually fabricated from natural fibres, synthetic polymers, ceramics or metals, but they may also consist of liquid films. Solid membranes are fabricated into flat sheets, tubes, hollow fibres or spiral-wound sheets. For the micro-porous membranes, separation is effected by differing rates of diffusion through the pores, while for non-porous membranes, separation occurs because of differences in both the solubility in the membrane and the rate of diffusion through the membrane. Table 2 is a compilation of the more common industrial separation operations based on the use of a barrier. A more comprehensive table is given by Seader and Henley.1... [Pg.146]

The first step in method development is selecting an adequate HPLC mode for the particular sample. This choice depends on the character of the sample compounds, which can be either neutral (hydrophilic or lipophilic) or ionic, low-molecular (up to 2000 Da) or macromolecular (biopolymers or synthetic polymers). Many neutral compounds can be separated either by reversed-phase or by normal-phase chromatography, but a reversed-phase system without ionic additives to the aqueous-organic mobile phase is usually the best first choice. Strongly lipophilic samples often can be separated either by non-aqueous reversed-pha.se chromatography or by normal-phase chromatography. Positional isomers are usually better separated by normal-phase than by reversed-phase chromatography and the separation of optical isomers (enantiomers) requires either special chiral columns or addition of a chiral selector to the mobile phase. [Pg.52]

An alternative approach is based on the theoretical foundation described earlier for the colligative properties. If the solution is isotonic with blood, its osmotic pressure, vapor pressure, boiling-point elevation, and freezing-point depression should also be identical to those of blood. Thus, to measure isotonicity, one has to measure the osmotic pressure of the solution and compare it with the known value for blood. However, the accurate measurement of osmotic pressure is difficult and cumbersome. If a solution is separated from blood by a true semipermeable membrane, the resulting pressure due to solvent flow (the head) is accurately measurable, but the solvent flow dilutes the solution, thus not allowing one to know the concentration of the dissolved solute. An alternative is to apply pressure to the solution side of the membrane to prevent osmotic solvent flow. In 1877, Pfeffer used this method to measure osmotic pressure of sugar solutions. With the advances in the technology, sensitive pressure transducers, and synthetic polymer membranes, this method can be improved. However, results of the search for a true semipermeable membrane are still... [Pg.3775]


See other pages where Synthetic polymers separation methods is mentioned: [Pg.537]    [Pg.165]    [Pg.225]    [Pg.172]    [Pg.327]    [Pg.213]    [Pg.268]    [Pg.275]    [Pg.93]    [Pg.128]    [Pg.72]    [Pg.360]    [Pg.959]    [Pg.111]    [Pg.132]    [Pg.448]    [Pg.140]    [Pg.29]    [Pg.22]    [Pg.91]    [Pg.5]    [Pg.123]    [Pg.334]    [Pg.197]    [Pg.174]    [Pg.22]    [Pg.193]    [Pg.358]    [Pg.14]    [Pg.1944]    [Pg.155]    [Pg.450]    [Pg.129]    [Pg.862]    [Pg.1016]    [Pg.163]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Polymer Synthetic polymers

Polymer method

Polymer separations

Polymer separators

Separation methods

Separation synthetic polymers

Separative methods

Synthetic polymers

© 2024 chempedia.info