Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis substitution reactions

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

The earliest reported reference describing the synthesis of phenylene sulfide stmctures is that of Friedel and Crafts in 1888 (6). The electrophilic reactions studied were based on reactions of benzene and various sulfur sources. These electrophilic substitution reactions were characterized by low yields (50—80%) of rather poorly characterized products by the standards of 1990s. Products contained many by-products, such as thianthrene. Results of self-condensation of thiophenol, catalyzed by aluminum chloride and sulfuric acid (7), were analogous to those of Friedel and Crafts. [Pg.441]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Methyl chloride can be converted iato methyl iodide or bromide by refluxing ia acetone solution ia the presence of sodium iodide or bromide. The reactivity of methyl chloride and other aUphatic chlorides ia substitution reactions can often be iacteased by usiag a small amount of sodium or potassium iodide as ia the formation of methyl aryl ethers. Methyl chloride and potassium phthalimide do not readily react to give /V-methy1phtha1imide unless potassium iodide is added. The reaction to form methylceUulose and the Williamson synthesis to give methyl ethers are cataly2ed by small quantities of sodium or potassium iodide. [Pg.513]

In the case of phenazine, substitution in the hetero ring is clearly not possible without complete disruption of the aromatic character of the molecule. Like pyrazine and quinoxa-line, phenazine is very resistant towards the usual electrophilic reagents employed in aromatic substitution reactions and substituted phenazines are generally prepared by a modification of one of the synthetic routes employed in their construction from monocyclic precursors. However, a limited range of substitution reactions has been reported. Thus, phenazine has been chlorinated in acid solution with molecular chlorine to yield the 1-chloro, 1,4-dichloro, 1,4,6-trichloro and 1,4,6,9-tetrachloro derivatives, whose gross structures have been proven by independent synthesis (53G327). [Pg.164]

In those reactions where the fV-oxide group assists electrophilic or nucleophilic substitution reactions, and is not lost during the reaction, it is readily removed by a variety of reductive procedures and thus facilitates the synthesis of substituted derivatives of pyrazine, quinoxaline and phenazine. [Pg.172]

Azodn-2(l H)-one, 3-bromohexahydro-substitution reactions, 7, 656 Azodn-2( 1 H)-one, 3-chlorohexahydro-substitution reactions, 7, 656 Azodn-2(lH)-one, hexahydro-synthesis, 7, 654... [Pg.529]

Benzenediazonium fluoroborate, 2-carboxy-xanthone synthesis from, 3, 838 Benzenediazonium ions phenyl azide formation from, 5, 839 Benzenediazonium salts, o-(imidazol-l-yl)-intramolecular diazo coupling, 5, 404 Benzene-1,2-disulfonimides N-substituted reactions, 6, 930 Benzene episulfide formation, 7, 577 Benzeneimine... [Pg.536]

Furazano[3,4-d]pyrimidine, 7-amino-synthesis, 6, 729 UV spectra, 6, 713 Furazanopyrimidines amine synthesis from, 5, 591 synthesis, 6, 418 Furazano[3,4-d]pyrimidines nucleophilic attack, 6, 719 nucleophilic substitution, 6, 713 reduction, 6, 402 7-substituted reactions, 6, 722 Furazano[3,4-a]quinolizines synthesis, 6, 730... [Pg.636]

Isoxazole, 5-( p-bromophenyl)-3-phenyl-synthesis, 6, 63 Isoxazole, 3-chloro-reduction, 6, 58 4-substituted reactions, 6, 58... [Pg.686]

IR spectroscopy, 4, 738 synthesis, 4, 743, 874-875, 885 substitution reactions steric effects, 4, 752 sulfides... [Pg.895]

Sulfonate esters are especially useful substrates in nucleophilic substitution reactions used in synthesis. They have a high level of reactivity, and, unlike alkyl halides, they can be prepared from alcohols by reactions that do not directly involve bonds to the carbon atom imdeigoing substitution. The latter aspect is particularly important in cases in which the stereochemical and structural integrity of the reactant must be maintained. Sulfonate esters are usually prepared by reaction of an alcohol with a sulfonyl halide in the presence of pyridine ... [Pg.296]

Reduction of benzofuroxans is usually the most convenient route to benzofurazans and o-quinone dioximes (see Section VI, C). Reduction of 4-nitrobenzofuroxan would seem to be a method of synthesis of 1,2,3-triaminobenzene, while the haloalkoxy-substitution reaction (Section VTT,B) and the rearrangements of Section VIII provide compounds accessible only with difficulty by other methods. Apart from these reactions, the benzofuroxans appear to be of limited synthetic utility. [Pg.30]

Leptosins D-F (258a-c, Scheme 39) [94JCS(P1)1859] were isolated by Takahashi and co-workers from the culture of a strain of Leptosphaeria sp. as cytotoxic substances against the P388 lymphocytic leukemia cell line comparable to that of mitomycin C. Utilizing the nucleophilic substitution reaction of 1-hydroxytryptamines, a simple methodology for the synthesis of core structures of leptosins has been developed (2000H1255). [Pg.139]

The nucleophilic substitution reactions are still more limited in scope owing to the instability of the isoxazole ring toward nucleophilic reagents. Homolytic reactions appear to be unknown though some of the reactions being studied are possibly of this type. Besides those reactions which are characteristic of the reactivity of the isoxazole nucleus itself, we shall consider in this section some substitution reactions in the side chain organomagnesium synthesis in the isoxazole series, condensation reactions of the methyl groups of methyl-isoxazoles, and finally some miscellaneous reactions. [Pg.382]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

The preparation of a formyl-substituted aromatic derivative 3 from an aromatic substrate 1 by reaction with hydrogen cyanide and gaseous hydrogen chloride in the presence of a catalyst is called the Gattermann synthesis This reaction can be viewed as a special variant of the Friedel-Crafts acylation reaction. [Pg.133]

Nucleophilic displacement reactions One of the most common reactions in organic synthesis is the nucleophilic displacement reaction. The first attempt at a nucleophilic substitution reaction in a molten salt was carried out by Ford and co-workers [47, 48, 49]. FFere, the rates of reaction between halide ion (in the form of its tri-ethylammonium salt) and methyl tosylate in the molten salt triethylhexylammoni-um triethylhexylborate were studied (Scheme 5.1-20) and compared with similar reactions in dimethylformamide (DMF) and methanol. The reaction rates in the molten salt appeared to be intermediate in rate between methanol and DMF (a dipolar aprotic solvent loiown to accelerate Sn2 substitution reactions). [Pg.184]

Chlorine and iodine can be introduced into aromatic rings by electrophilic substitution reactions, but fluorine is too reactive and only poor yields of monofluoro-aromatic products are obtained by direct fluorinafion. Aromatic rings react with CI2 in the presence of FeCl3 catalyst to yield chlorobenzenes, just as they react with Bi 2 and FeBr3. This kind of reaction is used in the synthesis of numerous pharmaceutical agents, including the antianxiety agent diazepam, marketed as Valium. [Pg.550]

Esters can also be synthesized by an acid-catalyzed nucleophilic acyl substitution reaction of a carboxylic acid with an alcohol, a process called the Fischer esterification reaction. Unfortunately, the need to use an excess of a liquid alcohol as solvent effectively limits the method to the synthesis of methyl, ethyl, propyl, and butyl esters. [Pg.795]

Steps 1-2 of Figure 29.5 Acyl Transfers The starting material for fatty-acid synthesis is the thioesteT acetyl CoA, the ultimate product of carbohydrate breakdown, as we ll see in Section 29.6. The synthetic pathway begins with several priming reactions, which transport acetyl CoA and convert it into more reactive species. The first priming reaction is a nucleophilic acyl substitution reaction that converts acetyl CoA into acetyl ACP (acyl carrier protein). The reaction is catalyzed by ACP transacyla.se. [Pg.1138]

Dichlorodibenzo[/>,/][l,5]diazocine (4, vide supra) can be used for the synthesis of several other derivatives by substitution reactions. [Pg.550]

Saito has recently reported high yields and enantioselectivities in aziridine synthesis through reactions between aryl- or vinyl-substituted N-sulfonyl imines and aryl bromides in the presence of base and mediated by a chiral sulfide 122 (Scheme 1.41) [66]. Aryl substituents with electron-withdrawing and -donating groups gave modest transxis selectivities (around 3 1) with high enantioselectiv-... [Pg.32]


See other pages where Synthesis substitution reactions is mentioned: [Pg.151]    [Pg.950]    [Pg.558]    [Pg.75]    [Pg.304]    [Pg.523]    [Pg.545]    [Pg.636]    [Pg.708]    [Pg.794]    [Pg.814]    [Pg.843]    [Pg.449]    [Pg.1128]    [Pg.950]    [Pg.201]    [Pg.2]    [Pg.79]    [Pg.270]    [Pg.140]    [Pg.344]    [Pg.296]    [Pg.320]    [Pg.47]    [Pg.224]    [Pg.88]    [Pg.115]   
See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.471 ]




SEARCH



Bond formation synthesis Substitution reactions

Electrophilic aromatic substitution reactions asymmetric synthesis

Nucleophilic substitution reactions alcohol synthesis

Nucleophilic substitution reactions amine synthesis

Nucleophilic substitution reactions ether synthesis

Nucleophilic substitution reactions organic synthesis

Rearrangement reactions, oxazole synthesis 2-substituted oxazoles

Substitution Reactions and their Applications in Synthesis

Substitution and Elimination Reactions in Synthesis

Substitution reactions, natural products synthesis

Substitution synthesis

Synthesis with aromatic substitution reactions

© 2024 chempedia.info