Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acids synthesis

Method of synthesis lactic acid is heated at 150°C to obtain oligomeric PLA (polymerization degree 1-8). Oligomers are heated at 180°C under vacuum for 5 hours to give PLA having molecular weight of 100,000 Bastioli, C, Handbook of Biodegradable Polymers, Rapra, 2005. [Pg.450]

In the biological synthesis, lactic acid is obtained by fermentation of carbohydrates by lactic bacteria belonging mainly to the genus Lactobacillus, or fungi [32,33]. This kind of synthesis leads mainly to poly(L-lactic acid). On the other hand, the chemical synthesis could lead to various ratios of L- and D-lactic acid. [Pg.437]

Lactic acid [50-21-5] (2-hydroxypropanoic acid), CH CHOHCOOH, is the most widely occurring hydroxycarboxylic acid and thus is the principal topic of this article. It was first discovered ia 1780 by the Swedish chemist Scheele. Lactic acid is a naturally occurring organic acid that can be produced by fermentation or chemical synthesis. It is present ia many foods both naturally or as a product of in situ microbial fermentation, as ia sauerkraut, yogurt, buttermilk, sourdough breads, and many other fermented foods. Lactic acid is also a principal metaboHc iatermediate ia most living organisms, from anaerobic prokaryotes to humans. [Pg.511]

Other possible chemical synthesis routes for lactic acid include base-cataly2ed degradation of sugars oxidation of propylene glycol reaction of acetaldehyde, carbon monoxide, and water at elevated temperatures and pressures hydrolysis of chloropropionic acid (prepared by chlorination of propionic acid) nitric acid oxidation of propylene etc. None of these routes has led to a technically and economically viable process (6). [Pg.513]

A benzyl carbonate was prepared in 83% yield from the sodium alkoxide of glycerol and benzyl chloroformate (20°, 24 h). It is cleaved by hydrogenolysis (H2/ Pd-C, EtOH, 20°, 2 h, 2 atm, 76% yield) and electrolytic reduction (-2.7 V, R4N X, DMF, 70% yield). A benzyl carbonate was used to protect the hy-droxyl group in lactic acid during a peptide synthesis. [Pg.109]

In metabolic terms there are three dearly distinguishable types of compound to deal with. Firstly, compounds which are obviously waste products - end products of one or more pathways which would normally be excreted from the cell (for example lactic acid). Secondly, compounds which are end products of pathways but which are not waste products and whose synthesis is normally very carefully controlled (for example amino adds). Thirdly, compounds which are intermediates of pathways and hence not normally considered as end products or wastes at all (for example ritric add). [Pg.117]

Polyester chemistry is the same as studied by Carothers long ago, but polyester synthesis is still a very active field. New polymers have been very recently or will be soon commercially introduced PTT for fiber applications poly(ethylene naph-thalate) (PEN) for packaging and fiber applications and poly(lactic acid) (PLA), a biopolymer synthesized from renewable resources (corn syrup) introduced by Dow-Cargill for large-scale applications in textile industry and solid-state molding resins. Polyesters with unusual hyperbranched architecture also recently appeared and are claimed to find applications as crosstinkers, surfactants, or processing additives. [Pg.20]

PLA degradation, 43 Planar polymer, synthesis of, 505 PLLA. See Poly(L-lactic acid) (PLLA) PMDA. See Pyromellitic dianhydride (PMDA)... [Pg.593]

See also PBT degradation structure and properties of, 44-46 synthesis of, 106, 191 Polycaprolactam (PCA), 530, 541 Poly(e-caprolactone) (CAPA, PCL), 28, 42, 86. See also PCL degradation OH-terminated, 98-99 Polycaprolactones, 213 Poly(carbo[dimethyl]silane)s, 450, 451 Polycarbonate glycols, 207 Polycarbonate-polysulfone block copolymer, 360 Polycarbonates, 213 chemical structure of, 5 Polycarbosilanes, 450-456 Poly(chlorocarbosilanes), 454 Polycondensations, 57, 100 Poly(l,4-cyclohexylenedimethylene terephthalate) (PCT), 25 Polydimethyl siloxanes, 4 Poly(dioxanone) (PDO), 27 Poly (4,4 -dipheny lpheny lpho sphine oxide) (PAPO), 347 Polydispersity, 57 Polydispersity index, 444 Poly(D-lactic acid) (PDLA), 41 Poly(DL-lactic acid) (PDLLA), 42 Polyester amides, 18 Polyester-based networks, 58-60 Polyester carbonates, 18 Polyester-ether block copolymers, 20 Polyester-ethers, 26... [Pg.595]

Simple 1,2,4-triazole derivatives played a key role in both the synthesis of functionalized triazoles and in asymmetric synthesis. l-(a-Aminomethyl)-1,2,4-triazoles 4 could be converted into 5 by treatment with enol ethers <96SC357>. The novel C2-symmetric triazole-containing chiral auxiliary (S,S)-4-amino-3,5-bis(l-hydroxyethyl)-l,2,4-triazole, SAT, (6) was prepared firmn (S)-lactic acid and hydrazine hydrate <96TA1621>. This chiral auxiliary was employed to mediate the diastereoselective 1,2-addition of Grignard reagents to the C=N bond of hydrazones. The diastereoselective-alkylation of enolates derived from ethyl ester 7 was mediated by a related auxiliary <96TA1631>. [Pg.162]

Polylactates are an interesting class of biodegradable polymers which may be made from either renewable or petroleum feedstocks. The synthesis of lactic acid raises real issues concerning the relative greenness of the renewable and non-renewable (HCN) route as discussed in Chapter 2. A summary comparison of the greenness of both routes is shown is Table 6.4. Without a full LCA the choice of route on environmental grounds is not easy and at least partly depends on plant location and raw material availability. [Pg.196]

Pyruvic acid is the simplest homologue of the a-keto acid, whose established procedures for synthesis are the dehydrative decarboxylation of tartaric acid and the hydrolysis of acetyl cyanide. On the other hand, vapor-phase contact oxidation of alkyl lactates to corresponding alkyl pyruvates using V2C - and MoOa-baseds mixed oxide catalysts has also been known [1-4]. Recently we found that pyruvic acid is obtained directly from a vapor-phase oxidative-dehydrogenation of lactic acid over iron phosphate catalysts with a P/Fe atomic ratio of 1.2 at a temperature around 230°C [5]. [Pg.201]

A component of the ribotide reductase complex of enzymes, protein Ba, has been shown to contain two non-heme iron atoms per mole (77). This enzyme plays a vital, albeit indirect, role in the synthesis of DNA. Curiously, the lactic acid bacteria do not employ iron for the reduction of the 2 hydroxyl group of ribonucleotides. In these organisms this role has been assumed by the cobalt-containing vitamin Bi2 coenzyme (18). The mechanism of the reaction has been studied and has been shown to procede with retention of configuration (19). [Pg.150]

In addition to solvent uses, esters of lactic acid can be used to recover pure lactic acid via hydrolysis, which in-tum is used to make optically active dilactide and subsequently polylactic acid used for drag delivery system.5 This method of recovery for certain lactic acid applications is critical in synthesis of medicinal grade polymer because only optically active polymers with low Tg are useful for drug delivery systems. Lactic acid esters themselves can also be directly converted into polymers, (Figure 1), although the commercial route proceeds via ring-opening polymerization of dilactide. [Pg.374]

Figure 13.1.4 The synthesis of poly(lactic acid) (PLA) by a ring-opening polymerization of the cyclic diester of lactic acid (lactide). Figure 13.1.4 The synthesis of poly(lactic acid) (PLA) by a ring-opening polymerization of the cyclic diester of lactic acid (lactide).
Auras R, Lim LK, Selke EM, Tsuji H (2010) Poly(lactic acid) synthesis, structures, properties, and applications. Wiley, Hoboken, NJ... [Pg.107]

Poly(lactic acid) (PLA) has also been added to poly(SA) via melt polycondensation to produce the triblock copolymers poly(lactic acid-Wock-sebacic acid-Wock-lactic acid) (P(LA-block-SA-block-LA)) by Slivniak and Domb (2002). The PLA (d-, l-, and dl-) was incorporated by acetylation and addition to the PSA synthesis. They showed the formation of stable stereocomplexed particles with increased melting points and reduced solubility, and studied the degradation and drug release characteristics of the same (Slivniak and Domb, 2002). The stereocomplexes self-assemble as a consequence of the chirality in the PLA portions of the chains (Slivniak and Domb, 2002). [Pg.186]

Lactic-acid-based polymers, synthesis methods for preparing, 20 298 Lactic acid derivatives, 14 124 Lactic acid polymers, 14 125-126 Lactide (LA). See also Lactic acid entries early attempts to polymerize, 20 299 high purity, 14 123... [Pg.507]


See other pages where Lactic acids synthesis is mentioned: [Pg.157]    [Pg.511]    [Pg.513]    [Pg.513]    [Pg.514]    [Pg.515]    [Pg.515]    [Pg.298]    [Pg.481]    [Pg.190]    [Pg.376]    [Pg.571]    [Pg.115]    [Pg.81]    [Pg.99]    [Pg.597]    [Pg.135]    [Pg.2]    [Pg.35]    [Pg.37]    [Pg.60]    [Pg.62]    [Pg.313]    [Pg.26]    [Pg.159]    [Pg.73]    [Pg.191]    [Pg.49]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Biomass lactic acid synthesis

Chemical Synthesis of Lactic Acids

Glyoxal, methylreduction synthesis of lactic acid

Lactic acid Chemical synthesis

Lactic acid chemical synthesis approach

Lactic acid natural microbial synthesis

Lactic acid, microbial synthesis

Synthesis and Production of Poly(lactic Acid)

Synthesis of Lactic Acid

Synthesis of Lactic Acid-based Polymers

Synthesis of Poly(Lactic Acid)

© 2024 chempedia.info