Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Suspension polymerization initiation

Values of q and Q have been regressed by Talamini [3] from experimental data. These are, for example, 4.0-6.0 at 50 °C for suspension polymerization initiated by lauroil peroxide (LPO). Rm is the specific polymerization rate in the monomer phase given by... [Pg.374]

In suspension polymerization, initiator (e.g. BF3 OEt2) is dissolved in the suspending medium. In the polymerization of crystals alone, gaseous BF3 (usually diluted with N2) is used. [Pg.124]

Polystyrene can also be prepared by suspension polymerization. Initiators being utilized are also organic peroxides, azo compounds, or sometimes a mixture of both. This technique offers the advantage of affording calibrated PS pearls which are weU-fitted for the technique of expansion with pentane (see Section 15.3.1.5). [Pg.531]

What order of the rate dependence would be expected in a suspension polymerization initially Why might the rate change abruptly after 5%-20% conversion ... [Pg.215]

Azobisnittiles are efficient sources of free radicals for vinyl polymerizations and chain reactions, eg, chlorinations (see Initiators). These compounds decompose in a variety of solvents at nearly first-order rates to give free radicals with no evidence of induced chain decomposition. They can be used in bulk, solution, and suspension polymerizations, and because no oxygenated residues are produced, they are suitable for use in pigmented or dyed systems that may be susceptible to oxidative degradation. [Pg.222]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

Initiators of suspension polymerization are organic peroxides or azo compounds that are soluble in the monomer phase but insoluble in the water phase. The amount of initiator influences both the polymerization rate and the molecular weight of the product (95). [Pg.170]

The discovery of PTFE (1) in 1938 opened the commercial field of perfluoropolymers. Initial production of PTFE was directed toward the World War II effort, and commercial production was delayed by Du Pont until 1947. Commercial PTFE is manufactured by two different polymerization techniques that result in two different types of chemically identical polymer. Suspension polymerization produces a granular resin, and emulsion polymerization produces the coagulated dispersion that is often referred to as a fine powder or PTFE dispersion. [Pg.348]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Wheieas the BPO—DMA ledox system works well for curing of unsaturated polyester blends, it is not a very effective system for initiating vinyl monomer polymerizations, and therefore it generally is not used in such appHcations (34). However, combinations of amines (eg, DMA) and acyl sulfonyl peroxides (eg, ACSP) are very effective initiator systems at 0°C for high conversion suspension polymerizations of vinyl chloride (35). BPO has also been used in combination with ferrous ammonium sulfate to initiate emulsion polymerizations of vinyl monomers via a redox reaction (36). [Pg.224]

In a suspension polymerization, monomer is suspended ia water as 0.1—5 mm droplets, stabilized by protective coUoids or suspending agents. Polymerization is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle size is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads of about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.268]

Emulsion Polymerization. When the U.S. supply of natural mbber from the Far East was cut off in World War II, the emulsion polymerization process was developed to produce synthetic mbber. In this complex process, the organic monomer is emulsified with soap in an aqueous continuous phase. Because of the much smaller (<0.1 jira) dispersed particles than in suspension polymerization and the stabilizing action of the soap, a proper emulsion is stable, so agitation is not as critical. In classical emulsion polymerization, a water-soluble initiator is used. This, together with the small particle size, gives rise to very different kinetics (6,21—23). [Pg.437]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Suspension Polymerization. This method (10) might be considered as a number of bulk polymerizations carried out simultaneously in the monomer droplets with water acting as a heat-transfer medium. A monomer-soluble initiator, eg, a peroxide or azo compound, and a protective coUoid like poly(vinyl alcohol) or bentonite, are requited. After completion of the polymerization, the excess of monomer(s) is steam stripped, and the beads of polymer are collected and washed on a centrifiige or filter and dried on a vibrating screen or by means of an expeUer—extmder. [Pg.474]

Styrene-based polymer supports are produced by o/w suspension polymerization of styrene and divinylbenzene. Suspension polymerization is usually carried out by using a monomer-soluble initiator such as benzoperoxide (BPO) or 2,2-azo-bis-isobutylnitrile (AIBN) at a temperature of 55-85°C (19). A relatively high initiator concentration of 1-5% (w/w) based on the monomer is used. The time required for complete monomer conversion must be determined by preliminary experiments and is usually between 5 and 20 h, depending on the initiator concentration, the temperature, and the exact composition of the monomer mixture (11-18). [Pg.7]

A porous polystyrene-divinylbenzene gel is produced by suspension polymerization in an aqueous system with incorporation of more than 5 mol% initiator to a total amount of styrene and divinylbenzene with an inert organic solvent as diluent and porogen (24). [Pg.8]

Beaded acrylamide resins (28) are generally produced by w/o inverse-suspension polymerization. This involves the dispersion of an aqueous solution of the monomer and an initiator (e.g., ammonium peroxodisulfates) with a droplet stabilizer such as carboxymethylcellulose or cellulose acetate butyrate in an immiscible liquid (the oil phase), such as 1,2-dichloroethane, toluene, or a liquid paraffin. A polymerization catalyst, usually tetramethylethylenediamine, may also be added to the monomer mixture. The polymerization of beaded acrylamide resin is carried out at relatively low temperatures (20-50°C), and the polymerization is complete within a relatively short period (1-5 hr). The polymerization of most acrylamides proceeds at a substantially faster rate than that of styrene in o/w suspension polymerization. The problem with droplet coagulation during the synthesis of beaded polyacrylamide by w/o suspension polymerization is usually less critical than that with a styrene-based resin. [Pg.9]

A novel cross-linked polystyrene-divinylbenzene copolymer has been produced from suspension polymerization with toluene as a diluent, having an average particle size of 2 to 50 /rm, with an exclusive molecular weight for the polystyrene standard from about 500 to 20,000 in gel-permeation chromatography. A process for preparing the PS-DVB copolymer by suspension polymerization in the presence of at least one free-radical polymerization initiator, such as 2,2 -azo-bis (2,4-dimethylvaleronitrile) with a half-life of about 2 to 60 min at 70°C, has been disclosed (78). [Pg.22]

Because most widely used methods used to prepare classical styrene/divinylben-zene copolymers have always been based on suspension polymerization, it seemed logical that a series of porous PDVB gels using similar methodologies could be developed. In suspension polymerization, divinylbenzene is suspended as a dispersion of small droplets in a continuous phase of water and polymerized by classical free radical initiation. This process produces the spherical beads... [Pg.368]

The suspension polymerization of 65% acrylamide aqueous solution dispersed in n-hexane (aqueous phase -hexane = 1 5) in the presence of a stabilizer (sorbitan monostearate, 1.4% with respect to -hexane) and an initiator (2,2 -azo-bis-A/, A/ -dimethyleneisobutylamide chloride) carried out at 65°C for 3 h, with subsequent holding at 110°C, yields a powdered product with the granule size of 0.5 mm, while the addition of Na2S04... [Pg.67]

Various novel applications in biotechnology, biomedical engineering, information industry, and microelectronics involve the use of polymeric microspheres with controlled size and surface properties [1-31. Traditionally, the polymer microspheres larger than 100 /urn with a certain size distribution have been produced by the suspension polymerization process, where the monomer droplets are broken into micron-size in the existence of a stabilizer and are subsequently polymerized within a continuous medium by using an oil-soluble initiator. Suspension polymerization is usually preferred for the production of polymeric particles in the size range of 50-1000 /Ltm. But, there is a wide size distribution in the product due to the inherent size distribution of the mechanical homogenization and due to the coalescence problem. The size distribution is measured with the standard deviation or the coefficient of variation (CV) and the suspension polymerization provides polymeric microspheres with CVs varying from 15-30%. [Pg.189]

In suspension polymerization, the monomer gets dispersed in a liquid, such as water. Mechanical agitation keeps the monomer dispersed. Initiators should be soluble in the monomer. Stabilizers, such as talc or polyvinyl alcohol, prevent polymer chains from adhering to each other and keep the monomer dispersed in the liquid medium. The final polymer appears in a granular form. [Pg.316]

The decomposition of an initiator seldom produces a quantitative yield of initiating radicals. Most thermal and photochemical initiators generate radicals in pairs. The self-reaction of these radicals is often the major pathway for the direct conversion of primary radicals to non-radical products in solution, bulk or suspension polymerization. This cage reaction is substantial even in bulk polymerization at low conversion when the medium is essentially monomer. The importance of the process depends on the rate of diffusion of these species away from one another. [Pg.60]

Suspension polymerizations are often regarded as "mini-bulk" polymerizations since ideally all reaction occurs w ithin individual monomer droplets. Initiators with high monomer and low water solubility are generally used in this application. The general chemistry, initiator efficiencies, and importance of side reactions are similar to that seen in homogeneous media. [Pg.63]

The concentration of monomers in the aqueous phase is usually very low. This means that there is a greater chance that the initiator-derived radicals (I ) will undergo side reactions. Processes such as radical-radical reaction involving the initiator-derived and oligomeric species, primary radical termination, and transfer to initiator can be much more significant than in bulk, solution, or suspension polymerization and initiator efficiencies in emulsion polymerization are often very low. Initiation kinetics in emulsion polymerization are defined in terms of the entry coefficient (p) - a pseudo-first order rate coefficient for particle entry. [Pg.64]

Manufacture of highly water-absorbent polymers with uniform particle size and good flowability can be carried out by reverse phase suspension polymerization of (meth)acrylic acid monomers in a hydrocarbon solvent containing crosslinker and radical initiator. Phosphoric acid monoester or diester of alka-nole or ethoxylated alkanole is used as surfactant. A polymer with water-absorbent capacity of 78 g/g polymer can be obtained [240]. [Pg.605]

In suspension polymerization, the monomer is agitated in a solvent to form droplets, and then stabilized through the use of surfactants to form micelles. The added initiator is soluble in the solvent such that the reaction is initiated at the skin of the micelle. Polymerization starts at the interface and proceeds towards the center of the droplet. Polystyrene and polyvinyl chloride are often produced via suspension polymerization processes. [Pg.56]

Why are some initiators water soluble and others monomer soluble Which type is used for suspension polymerization Emulsion polymerization ... [Pg.356]


See other pages where Suspension polymerization initiation is mentioned: [Pg.397]    [Pg.125]    [Pg.440]    [Pg.500]    [Pg.488]    [Pg.490]    [Pg.239]    [Pg.67]    [Pg.67]    [Pg.68]    [Pg.190]    [Pg.320]    [Pg.595]    [Pg.205]    [Pg.503]    [Pg.322]    [Pg.82]    [Pg.174]    [Pg.324]    [Pg.334]    [Pg.346]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Initiator polymeric

Polymerization suspension polymerizations

Suspension initiators

Suspension polymerization

Suspension polymerization initiators

© 2024 chempedia.info