Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface tension formation

At lower gas speed and higher drops surface tension, formation of bag structures and breakup into smaller droplets have been observed following the initial drop deformation into a disk [5], In the current experiment, these smaller drops are not observed, primarily due to the large Weber number. A mist with scales smaller than the camera resolution, which Wcis 1.2 /mi/pixel, was visible both... [Pg.325]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

A recent design of the maximum bubble pressure instrument for measurement of dynamic surface tension allows resolution in the millisecond time frame [119, 120]. This was accomplished by increasing the system volume relative to that of the bubble and by using electric and acoustic sensors to track the bubble formation frequency. Miller and co-workers also assessed the hydrodynamic effects arising at short bubble formation times with experiments on very viscous liquids [121]. They proposed a correction procedure to improve reliability at short times. This technique is applicable to the study of surfactant and polymer adsorption from solution [101, 120]. [Pg.35]

The type of behavior shown by the ethanol-water system reaches an extreme in the case of higher-molecular-weight solutes of the polar-nonpolar type, such as, soaps and detergents [91]. As illustrated in Fig. Ul-9e, the decrease in surface tension now takes place at very low concentrations sometimes showing a point of abrupt change in slope in a y/C plot [92]. The surface tension becomes essentially constant beyond a certain concentration identified with micelle formation (see Section XIII-5). The lines in Fig. III-9e are fits to Eq. III-57. The authors combined this analysis with the Gibbs equation (Section III-SB) to obtain the surface excess of surfactant and an alcohol cosurfactant. [Pg.69]

A familiar (and biblical [SO]) example is the formation of tears of wine in a glass. Here, the evaporation of the alcohol from the meniscus leads to a local raising of the surface tension, which, in turn, induces a surface and accompanying bulk flow upward. [Pg.111]

Thus, adding surfactants to minimize the oil-water and solid-water interfacial tensions causes removal to become spontaneous. On the other hand, a mere decrease in the surface tension of the water-air interface, as evidenced, say, by foam formation, is not a direct indication that the surfactant will function well as a detergent. The decrease in yow or ysw implies, through the Gibb s equation (see Section III-5) adsorption of detergent. [Pg.485]

The role of coalescence within a contactor is not always obvious. Sometimes the effect of coalescence can be inferred when the holdup is a factor in determining the Sauter mean diameter (67). If mass transfer occurs from the dispersed (d) to the continuous (e) phase, the approach of two drops can lead to the formation of a local surface tension gradient which promotes the drainage of the intervening film of the continuous phase (75) and thereby enhances coalescence. It has been observed that d-X.o-c mass transfer can lead to the formation of much larger drops than for the reverse mass-transfer direction, c to... [Pg.69]

Initiation and Growth of Cells. The initiation or nucleation of cells is the formation of cells of such size that they are capable of growth under the given conditions of foam expansion. The growth of a hole or cell in a fluid medium at equiUbrium is controlled by the pressure difference (AP) between the inside and the outside of the cell, the surface tension of the fluid phase y, and the radius r of the cell ... [Pg.403]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Static mixing of immiscible Hquids can provide exceUent enhancement of the interphase area for increasing mass-transfer rate. The drop size distribution is relatively narrow compared to agitated tanks. Three forces are known to influence the formation of drops in a static mixer shear stress, surface tension, and viscous stress in the dispersed phase. Dimensional analysis shows that the drop size of the dispersed phase is controUed by the Weber number. The average drop size, in a Kenics mixer is a function of Weber number We = df /a, and the ratio of dispersed to continuous-phase viscosities (Eig. 32). [Pg.436]

The primary site of action is postulated to be the Hpid matrix of cell membranes. The Hpid properties which are said to be altered vary from theory to theory and include enhancing membrane fluidity volume expansion melting of gel phases increasing membrane thickness, surface tension, and lateral surface pressure and encouraging the formation of polar dislocations (10,11). Most theories postulate that changes in the Hpids influence the activities of cmcial membrane proteins such as ion channels. The Hpid theories suffer from an important drawback at clinically used concentrations, the effects of inhalational anesthetics on Hpid bilayers are very small and essentially undetectable (6,12,13). [Pg.407]

Inks. The main components of the inks ate typically water, colorants, and humectants. Additives ate used to control drying time, waterfastness, lightfastness, and consistency of drop formation. Water is an excellent vehicle for ink jet because of its high surface tension and safety in all environments. [Pg.53]

The principal physical properties influencing ink performance ate surface tension and viscosity. High surface tension is desired for good droplet formation and capillary refill in dtop-on-demand ink jet. Low viscosity is desired because less energy is required to pump and eject ink. Conductivity is also an important parameter. Continuous ink-jet inks must have some conductivity to allow for charging. Low conductivity is generally preferred for impulse, particularly thermal ink jet, because excess ions can cause corrosion of the printhead. [Pg.53]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

K, have been tabulated (2). Also given are data for superheated carbon dioxide vapor from 228 to 923 K at pressures from 7 to 7,000 kPa (1—1,000 psi). A graphical presentation of heat of formation, free energy of formation, heat of vaporization, surface tension, vapor pressure, Hquid and vapor heat capacities, densities, viscosities, and thermal conductivities has been provided (3). CompressibiHty factors of carbon dioxide from 268 to 473 K and 1,400—69,000 kPa (203—10,000 psi) are available (4). [Pg.18]

Surfactants aid dewatering of filter cakes after the cakes have formed and have very Httle observed effect on the rate of cake formation. Equations describing the effect of a surfactant show that dewatering is enhanced by lowering the capillary pressure of water in the cake rather than by a kinetic effect. The amount of residual water in a filter cake is related to the capillary forces hoi ding the Hquids in the cake. Laplace s equation relates the capillary pressure (P ) to surface tension (cj), contact angle of air and Hquid on the soHd (9) which is a measure of wettabiHty, and capillary radius (r ), or a similar measure appHcable to filter cakes. [Pg.21]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Cavitation and Flashing From the discussion on pressure recoveiy it was seen that the pressure at the vena contracta can be much lower than the downstream pressure. If the pressure on a hquid falls below its vapor pressure (p,J, the liquid will vaporize. Due to the effect of surface tension, this vapor phase will first appear as bubbles. These bubbles are carried downstream with the flow, where they collapse if the pressure recovers to a value above p,. This pressure-driven process of vapor-bubble formation and collapse is known as cavitation. [Pg.789]

Increase adhesion tension. Maximize surface tension. Minimize contact angle. Alter surfactant concentration or type to maximize adhesion tension and minimize Marangoni effects. Precoat powder with wettahle monolayers, e.g., coatings or steam. Control impurity levels in particle formation. Alter crystal hahit in particle formation. Minimize surface roughness in milhng. [Pg.1881]

Bubble sizes at formation generally increase with surface tension and orifice diameter. Prediction of sizes in swarms from multiple orifices is difficult. In aqueous solutions of low surface tension, Bubble diameters of the order of 1 mm are common. Bubbles produced by the more complicated techniques of pressure flotation or vacuum flotation are usually smaller, with diameters of the order of 0.1 mm or less. [Pg.2019]

Other effects. In addition to the compound formation and ionisation effects which have been considered, it is also necessary to take account of so-called matrix effects. These are predominantly physical factors which will influence the amount of sample reaching the flame, and are related in particular to factors such as the viscosity, the density, the surface tension and the volatility of the solvent used to prepare the test solution. If we wish to compare a series of solutions, e.g. a series of standards to be compared with a test solution, it is clearly essential that the same solvent be used for each, and the solutions should not differ too widely in their bulk composition. This procedure is commonly termed matrix matching. [Pg.794]


See other pages where Surface tension formation is mentioned: [Pg.74]    [Pg.74]    [Pg.89]    [Pg.468]    [Pg.212]    [Pg.44]    [Pg.470]    [Pg.541]    [Pg.445]    [Pg.336]    [Pg.491]    [Pg.208]    [Pg.201]    [Pg.245]    [Pg.304]    [Pg.335]    [Pg.255]    [Pg.381]    [Pg.1810]    [Pg.1881]    [Pg.68]    [Pg.694]    [Pg.35]    [Pg.28]    [Pg.771]    [Pg.587]    [Pg.334]    [Pg.96]    [Pg.5]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Surface formation

Tension formation

© 2024 chempedia.info