Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface lecithin

Lectins are plant and animal proteins capable of binding selectively to certain carbohydrate groups on the cell surface. Lecithins are lipids containing phosphorous and are found in the tissues of many plants and animals. Excess galactose may have been present. [Pg.726]

In water, a particle of lecithin exhibits myelin growth, ie, cylindrical sheets that are formed by bdayers and are separated by water which may break up into liposomes (vesicles with a single bilayer of Hpid enclosing an aqueous space). PhosphoHpids more generally form multilamellar vesicles (MLV) (5). These usually are converted to unilamellar vesicles (ULV) upon treatment, eg, sonication. Like other antipolar, surface-active agents, the phosphoHpids are... [Pg.98]

Lecithin (qv), a natural phosphoHpid possessing both hydrophilic and hydrophobic properties, is the most common emulsifier in the chocolate industry (5). The hydrophilic groups of the lecithin molecules attach themselves to the water, sugar, and cocoa soflds present in chocolate. The hydrophobic groups attach themselves to the cocoa butter and other fats such as milk fat. This reduces both the surface tension, between cocoa butter and the other materials present, and the viscosity. Less cocoa butter is then needed to adjust the final viscosity of the chocolate. [Pg.95]

In media selective for enterobacteria a surface-active agent is the main selector, whereas in staphylococcal medium sodium and lithium chlorides are the selectors staphylococci are tolerant of salt concentrations to around 7.5%. Mannitol salt, Baird-Parker (BP) and Vogel-Johnson (VJ) media are three examples of selective staphyloccocal media. Beside salt concentration the other principles are the use of a selective carbon source, mannitol or sodium pyruvate together with a buffer plus acid-base indicator for visualizing metabolic activity and, by inference, growth. BP medium also contains egg yolk the lecithin (phospholipid) in this is hydrolysed by staphylococcal (esterase) activity so that organisms are surrounded by a cleared zone in the otherwise opaque medium. The United States Pharmacopeia (1990) includes a test for staphylococci in pharmaceutical products, whereas the British Pharmacopoeia (1993) does not. [Pg.19]

Quaternary ammonium compounds (QACs Chapter 10) such as cetrimide, and also the bisbiguanide, chlorhexidine, are notoriously prone to promote clumping. A non-ionic surface-active agent of the type formed by condensing ethylene oxide with a long-chain fatty acid such as Cirrasol ALN-WF (ICI Ltd), formerly known as Lubrol W, together with lecithin, added to the diluting fluid has been used to overcome this effect. [Pg.240]

Solubility and dissolution are processes that take place in the gastric and the luminal fluids, not on the surface of epithelial cells. Measurement of solubility ideally needs to take place at pH 1.7 (stomach) and pH 5-8 (small intestinal tract). Ideally, the screen media should resemble intestinal fluids and contain bile acid-lecithin mixed micelles. Fast and reliable techniques for assessing solubility in... [Pg.248]

One of the most promising applications of enzyme-immobilized mesoporous materials is as microscopic reactors. Galameau et al. investigated the effect of mesoporous silica structures and their surface natures on the activity of immobilized lipases [199]. Too hydrophilic (pure silica) or too hydrophobic (butyl-grafted silica) supports are not appropriate for the development of high activity for lipases. An adequate hydrophobic/hydrophilic balance of the support, such as a supported-micelle, provides the best route to enhance lipase activity. They also encapsulated the lipases in sponge mesoporous silicates, a new procedure based on the addition of a mixture of lecithin and amines to a sol-gel synthesis to provide pore-size control. [Pg.141]

Fig. 9 Surface modification of cells with ssDNA-PEG-lipid. (a) Real-time monitoring of PEG-lipid incorporation into a supported lipid membrane by SPR. (r) A suspension of small unilamellar vesicles (SUV) of egg yolk lecithin (70 pg/mL) was applied to a CH3-SAM surface. A PEG-lipid solution (100 pg/mL) was then applied, (ii) Three types of PEG-lipids were compared PEG-DMPE (C14), PEG-DPPE (C16), and PEG-DSPE (C18) with acyl chains of 14, 16, and 18 carbons, respectively, (b) Confocal laser scanning microscopic image of an CCRF-CEM cell displays immobilized FITC-oligo(dA)2o hybridized to membrane-incorporated oligo(dT)20-PEG-lipid. (c) SPR sensorigrams of interaction between oligo(dA)2o-urokinase and the oligo (dT)2o-PEG-lipid incorporated into the cell surface, (i) BSA solution was applied to block nonspecific sites on the oligo(dT)20-incorporated substrate, (ii) Oligo(dA)20-urokinase (solid line) or oligo(dT)20-urokinase (dotted line) was applied... Fig. 9 Surface modification of cells with ssDNA-PEG-lipid. (a) Real-time monitoring of PEG-lipid incorporation into a supported lipid membrane by SPR. (r) A suspension of small unilamellar vesicles (SUV) of egg yolk lecithin (70 pg/mL) was applied to a CH3-SAM surface. A PEG-lipid solution (100 pg/mL) was then applied, (ii) Three types of PEG-lipids were compared PEG-DMPE (C14), PEG-DPPE (C16), and PEG-DSPE (C18) with acyl chains of 14, 16, and 18 carbons, respectively, (b) Confocal laser scanning microscopic image of an CCRF-CEM cell displays immobilized FITC-oligo(dA)2o hybridized to membrane-incorporated oligo(dT)20-PEG-lipid. (c) SPR sensorigrams of interaction between oligo(dA)2o-urokinase and the oligo (dT)2o-PEG-lipid incorporated into the cell surface, (i) BSA solution was applied to block nonspecific sites on the oligo(dT)20-incorporated substrate, (ii) Oligo(dA)20-urokinase (solid line) or oligo(dT)20-urokinase (dotted line) was applied...
The few examples of deliberate investigation of dynamic processes as reflected by compression/expansion hysteresis have involved monolayers of fatty acids (Munden and Swarbrick, 1973 Munden et al., 1969), lecithins (Bienkowski and Skolnick, 1974 Cook and Webb, 1966), polymer films (Townsend and Buck, 1988) and monolayers of fatty acids and their sodium sulfate salts on aqueous subphases of alkanolamines (Rosano et al., 1971). A few of these studies determined the amount of hysteresis as a function of the rate of compression and expansion. However, no quantitative analysis of the results was attempted. Historically, dynamic surface tension has been used to study the dynamic response of lung phosphatidylcholine surfactant monolayers to a sinusoidal compression/expansion rate in order to mimic the mechanical contraction and expansion of the lungs. [Pg.62]

The internal hydrophobic core of lipospheres is composed of fats and biodegradable polymers, mainly triglycerides and lactide-based polymers, whereas the surface activity of liposphere particles is provided by the surrounding lecithin layer, composed of phospholipid molecules. [Pg.3]

The description of the sorption of charged molecules at a charged interface includes an electrostatic term, which is dependent upon the interfacial potential difference, Ai//(V). This term is in turn related to the surface charge density, electric double layer model. The surface charge density is calculated from the concentrations of charged molecules at the interface under the assumption that the membrane itself has a net zero charge, as is the case, for example, for membranes constructed from the zwitterionic lecithin. Moreover,... [Pg.224]

Influence of subphase temperature, pH, and molecular structure of the lipids on their phase behavior can easily be studied by means of this method. The effect of chain length and structure of polymerizable and natural lecithins is illustrated in Figure 5. At 30°C distearoyllecithin is still fully in the condensed state (33), whereas butadiene lecithin (4), which carries the same numEer of C-atoms per alkyl chain, is already completely in the expanded state (34). Although diacetylene lecithin (6) bears 26 C-atoms per chain, it forms both an expanded and a condensed phase at 30°C. The reason for these marked differences is the disturbance of the packing of the hydrophobic side chains by the double and triple bonds of the polymerizable lipids. At 2°C, however, all three lecithins are in the condensed state. Chapman (27) reports about the surface pressure area isotherms of two homologs of (6) containing 23 and 25 C-atoms per chain. These compounds exhibit expanded phases even at subphase temperatures as low as 7°C. [Pg.215]

Figure 5. Surface pressure area isotherms of polymerizable and natural lecithins at 30°C (34j. Key ... Figure 5. Surface pressure area isotherms of polymerizable and natural lecithins at 30°C (34j. Key ...
The polarization properties of the evanescent wave(93) can be used to excite selected orientations of fluorophores, for example, fluorescent-labeled phosphatidylethanolamine embedded in lecithin monolayers on hydrophobic glass. When interpreted according to an approximate theory, the total fluorescence gathered by a high-aperture objective for different evanescent polarizations gives a measure of the probe s orientational order. The polarization properties of the emission field itself, expressed in a properly normalized theory,(94) can also be used to determine features of the orientational distribution of fluorophores near a surface. [Pg.324]

Glycerophospholipids are used for membrane synthesis and for producing a hydrophilic surface layer on lipoproteins such as VLDL. In cell membranes, they also serve as a reservoir of second messengers such as diacylglycerol, inositol 1,4,5-triphosphate, and arachidonic acid. Their structure is similar to triglycerides, except that the last fatty acid is replaced by phosphate and a water-soluble group such as choline (phosphatidylcholine, lecithin) or inositol (phosphatidyl-inositol). [Pg.210]

The aggregation behavior of C21-DA salt in dilute electrolyte medium appears to resemble that of certain polyhydroxy bile salts (25,16). That C21-DA, with a structure quite different from bile acids, should possess solution properties similar to, e.g., cholic acid is not entirely surprising in light of recent conductivity and surface tension measurements on purified (i.e., essentially monocarboxylate free) disodium salt aqueous solutions, and of film balance studies on acidic substrates (IX) The data in Figure 3 suggest that C21-DA salt micelles Incorporate detergents - up to an approximate weight fraction of 0.5 -much like cholate Incorporates lecithin or soluble... [Pg.120]


See other pages where Surface lecithin is mentioned: [Pg.1780]    [Pg.1794]    [Pg.89]    [Pg.364]    [Pg.1780]    [Pg.1794]    [Pg.89]    [Pg.364]    [Pg.144]    [Pg.545]    [Pg.99]    [Pg.102]    [Pg.711]    [Pg.115]    [Pg.197]    [Pg.536]    [Pg.262]    [Pg.76]    [Pg.131]    [Pg.147]    [Pg.201]    [Pg.879]    [Pg.216]    [Pg.52]    [Pg.80]    [Pg.665]    [Pg.134]    [Pg.66]    [Pg.93]    [Pg.98]    [Pg.200]    [Pg.47]    [Pg.14]    [Pg.17]    [Pg.69]    [Pg.85]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Lecithin

Lecithins, surface pressure area

Lecithins, surface pressure area isotherms

© 2024 chempedia.info